Simulation of Heavy Ion Beam Propagation

D. R. Welch and D. V. Rose
Mission Research Corporation, Albuquerque NM

C. L. Olson
Sandia National Laboratories

Simon Yu
Lawrence Berkeley National Laboratory

P. F. Ottinger
Naval Research Laboratory

Presented at the ARIES Project Meeting 6-7-01
Outline of Talk

- Assisted-Pinch Transport
 - concept
 - self field evolution
 - transport efficiency
 - stability

- Self-Pinched Transport
 - concept
 - pinch force mechanism
 - propagation window
 - status of 3d modeling

- Transport Issues
IPROP Modeling of Assisted Pinch Transport
Channel transport could ease chamber focus requirements and reduce driver costs.
Key physics issues involve the evolution of self fields

- Beam must first be captured at small radius by 50 kA discharge current - adiabatic lens
- 6-MA electrical beam current has potential for huge self fields given finite plasma conductivity
- Strong plasma return current can drive “hose” instability
IPROP* simulates HIF beam interaction with discharge channel in 2 and 3D

- IPROP is a quasi 3D EM hybrid code
- 2 fluid model for the plasma, PIC beam ions
- Extensive models for xenon gas breakdown physics

Simulation beam and gas conditions

- 4-GeV, 6 MA Pb\(^{+72}\) ions
- 15-cm radius beam is first transported ballistically 10 meters to the discharge. Micro-divergence nominally 1 mrad.
- Discharge initial parameters:
 - 50-kA current
 - 5-Torr, 3-eV ambient Xe
 - Axial position-dependent radius, reduced density (to 0.5 Torr minimum), ionization fraction (0.9 peak). Current density, reduced gas density and ionization fraction have square profiles
Effective current - sum of discharge and self currents - reaches 80 kA

- Results for nominal parameters
- 6 snapshots of effective current
- 2-4 s plasma return current decay time permits self field growth
Plasma heats ohmicly and from beam impact - decay time increases

- Red contour is 3.3 keV, beam head at 375 cm
- Enhanced sigma reduces magnitude of B oscillation

Enhanced heating at beam waists
Beam oscillations imprinted on self magnetic fields
Beam halo growth from interaction with varying $B_2(z)$

- 87% of beam transported over 4.5-m length
- 3.5-mm RMS radius
Finite conductivity results in some self field growth, beam loss

- Plasma current decay time scales as $F r^2$, reaches 2-4 μs (enough to permit 20-30 kA self field for 8 ns beam)
- Inductive fields rise with net current, reducing beam energy
- Oscillating beam imprints oscillating magnetic well
- Ions interact with changing B fields and heat
- Despite above effects, 87% beam energy transported, 3.5-mm RMS radius.
IPROP simulations of assisted-pincho hose instability

- IPROP is run with 2 azimuthal Fourier modes, m=0,1
- Beam is injected offset from channel 0.5 mm
- Conductivity profile is held fixed by initializing a singly ionized plasma with a gaussian radial profile

- **Run91** - 100 eV plasma and 50 kA discharge
- **Run92** - 10 eV plasma and 50 kA discharge
- **Run93** - 30 eV plasma and 12.5 kA discharge
Nominal conductivity simulation shows no evidence of hose

- Fixed 5 microsecond decay time - consistent with 2D breakdown calculations
- 100 eV plasma temperature
- 50 kA discharge
- Offsets damp
Highly resistive case - less than an e-fold growth

- 10-eV temperature,
- 50 kA discharge
- Large net currents, beam pinches
- Weak hose growth that damps rapidly
Low discharge current, medium conductivity case

- 30 eV temperature, 12.5-kA channel
- Hose again is very weak
Simulations suggest weak assisted pinch hose

\[\frac{I_d}{I_b} > I^* \]

* Ed Lee’s stability condition from Pinch Transport Workshop, 2001

- Hose instability does not appear to be an issue for assisted pinch
- Neglected effects of beam scattering, ionization should be stabilizing

IPROP result

<table>
<thead>
<tr>
<th>run</th>
<th>(I_d/I_b)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>run91</td>
<td>5</td>
<td>rock stable</td>
</tr>
<tr>
<td>run92</td>
<td>0.4</td>
<td>weak instability</td>
</tr>
<tr>
<td>run93</td>
<td>0.26</td>
<td>weak instability</td>
</tr>
</tbody>
</table>
Optimization of beam transport - work in progress

- Self-field strength limits energy transport efficiency and spot size
- 87% transport and 3.5 mm RMS spot size calculated over 4.5-m transport
- Weak self-hose instability calculated
- Need to develop technique for hollowing beam profile to better match recent target designs
LSP Modeling of Self-Pinched Transport

Enclosed Net Current (Amps); 14 ns

Propagation of pinched beam
2 possible scenarios for self pinched transport

- Beams combined into 2 as in assisted pinch
 - large currents have potential for instability without discharge channel

- Use 100-200 beams with 1-4 kA per beam (as in Neutralized Ballistic Transport)
 - requires more beam ports, beams overlap near target
Self-pinched transport relies on limited beam impact ionization in a low pressure gas

- Ionization electrons provide good charge but imperfect current neutralization

\[I_{net} = \theta^2 I_A \quad \text{where} \quad I_A = \frac{m_b c^3}{e Z} \beta \gamma \quad \text{and} \quad \theta = \frac{v_{b\perp}}{v_{bz}} \]
Self-pinched transport is predicted to occur at an intermediate gas pressure

- Maximum pinch force occurs when beam-impact ionizes a plasma density roughly that of the beam on time-scale of beam density rise time, $/v_b$
- Optimized for:
 \[R = n_g / 4Z = 1^* \]
- Trumpet shape and non-local secondary ionization help supply neutralization without $v_e = v_b$

Simulations indicated that a large net current fraction can be generated for SPT of a 1.5-MeV, 50-kA proton beam.

Consistent with results observed in SPT experiment on Gamble II at NRL (Ottinger et al., Phys. of Plasmas 7, 346, 2000)
Identify pinched transport gas/plasma constraints for HIF chamber transport

- New LSP* code calculations
- 10-kA, 4-GeV Pb\(^+\) beam, 2-ns rise in current
- \(\mathbf{J} = 2 \) ns trumpet-shaped beam envelope:
 - 1-cm max radius falling to .5 cm in 2 ns
- 3-300-mtorr FLiBe pressure (\(R = .1-10 \))
- Normalized plasma density \(N = n_p/n_b = 0-1 \)
 - \(n_b = 1.3 \times 10^{13} \) cm\(^{-3}\)
- Beam impact ionization only (ignore avalanche)

Weak net force for pencil beam in gas

- Significant fields limited to beam edge (skin depth effect)

Constant enclosed net current

Electric fields, 918 kV/cm max
Trumpet beam shape enlarges net-current sheath

- Large net current with trumpet
- Sheath thickness defined in low density beam front

Constant enclosed net current
Electric fields, 529 kV/cm max
Electron density follows trumpet shape

- Ion density indicates ionization position

Log plasma ion density
Log beam density
Log electron density
Log plasma ion density
LSP calculates strength of pinch force sensitive to gas, plasma densities

- Normalized gas density, \(R = \frac{J_F n_g}{4Z} \)
- Normalized plasma density (R=1), \(N = \frac{n_p}{n_b} \)

Pinch force optimized near \(R = 1-2 \), constrains chamber pressure
Falls off \(N > 0.1 \), pinch may weaken near target due to photo-ionization
Beam maintains pinch after detaching from wall

Beam Density contours (cm⁻³)
30-mtorr flibe R = 1, F = 0
Pinch force stabilizes at 3 kA in meter long simulation

- Pinch force is still sufficient for confinement
- Electric fields are small, < 100 kV/cm
Two-beam interaction in 3-D LSP simulation geometry

Pb^{+5}, 4 kA (electrical) current, $n_p = 5 \times 10^{13} \text{ cm}^{-3}$, $n_b = 1 \times 10^{12} \text{ cm}^{-3}$
No observed deflection for these 2 weak beams in N=10 plasma

- Need to examine higher currents, ionization and lower plasma densities
Research in self-pinched transport for HIF beams has just begun

- Confirmed the SPT mechanism for HIF beams
 - constraints of gas pressure and plasma density
- Pinch is sustained after detachment from wall
- Simulation of 3d beam-beam interaction underway
- Many issues remain:
 - Detailed beam-gas interaction (such as beam stripping)
 - Beam losses from inductive fields, trumpet formation
 - m=1 (hose) stability, beam-beam interactions
 - Steering and capturing beam
 - Channel expansion from $J \times B$ force