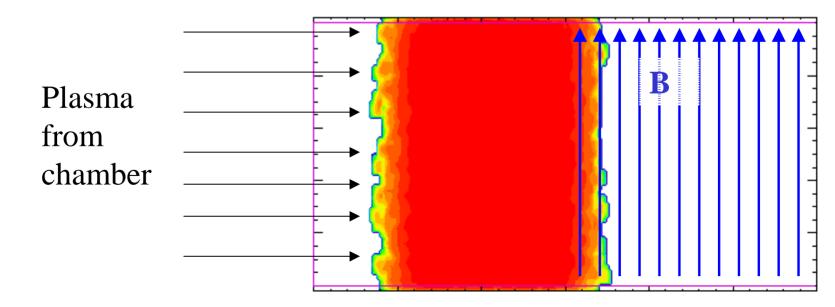
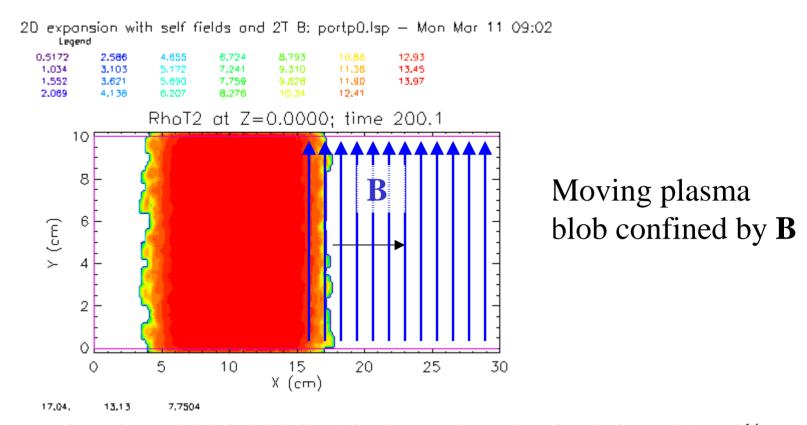
Diversion of Plasma in Beam Port with a Vertical Magnetic Field

D. R. Welch, D. V. Rose,

S. S. Yu and W. Sharp


Presented at the ARIES Project Meeting

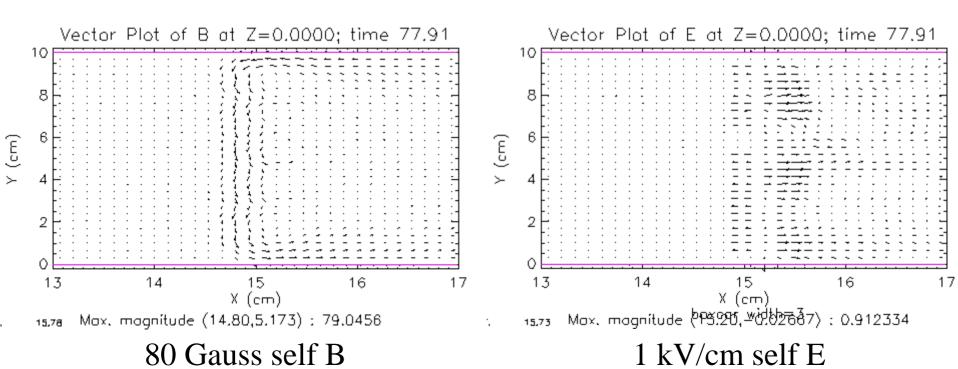
April 22-23, 2002


Research supported by the DOE through PPPL and the HIF VNL

A plasma can be blown off the chamber wall and expand into the beam port

- We expect the plasma to be of order 10^{14} cm⁻³ density and 10 eV
- Neutral fraction may be quite small for these conditions
- Plasma can be diverted to port wall with a vertical or dipole magnetic field
 Beam Port

LSP Plasma Diversion Simulation

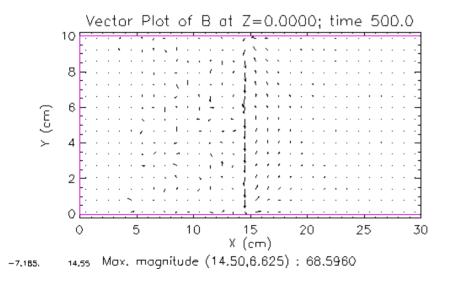

- A moving plasma blob is initialized in the x-y Cartesian simulation with a 10^{14} cm⁻³ density. The simulation box was 30-cm long and 10-cm wide. The plasma had H⁺ ions with a 10-100 eV temperature and a 3-9 cm/microsecond forward velocity. A no-field case and a case with electromagnetic fields and a 1-kG B_y field (for x > 15 cm) were simulated with Lsp.
- The B_v case shows the plasma is stopped and decays to the outer wall.

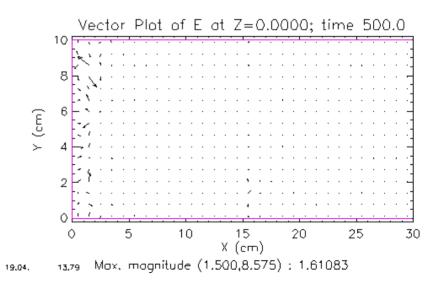
1-kG field was chosen to confine low-beta plasma

- For 10-eV, 10^{14} cm⁻³ plasma, the ratio of plasma energy to magnetic field energy $\beta = 8\pi nkT/B^2 = .04$
 - plasma cannot exclude magnetic field and should be confined
- Mean ion cyclotron radius $\omega_c = m_i v_i c/eB$ is roughly 3 mm for protons

2D Electromagnetic calculation run 80 ns

- Plasma ions can move a few mm
- JxB force leads to charge separation (electron motion is completely stopped)
- Plasma diamagnetic current negates 10% of applied field

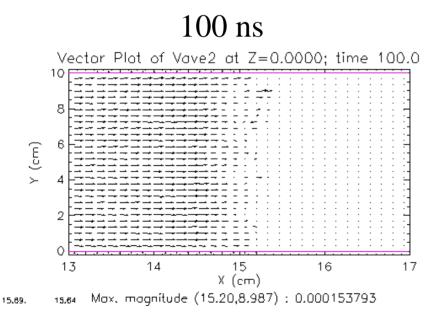


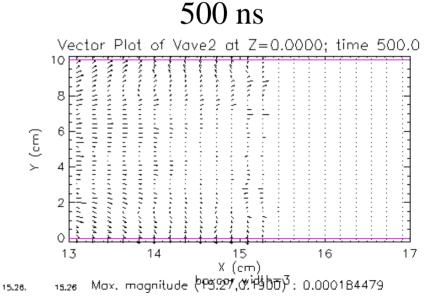

Self-Fields remain small after 500 ns

- Magnetic field penetration stagnates at 10% of applied field
- Small depth to penetration

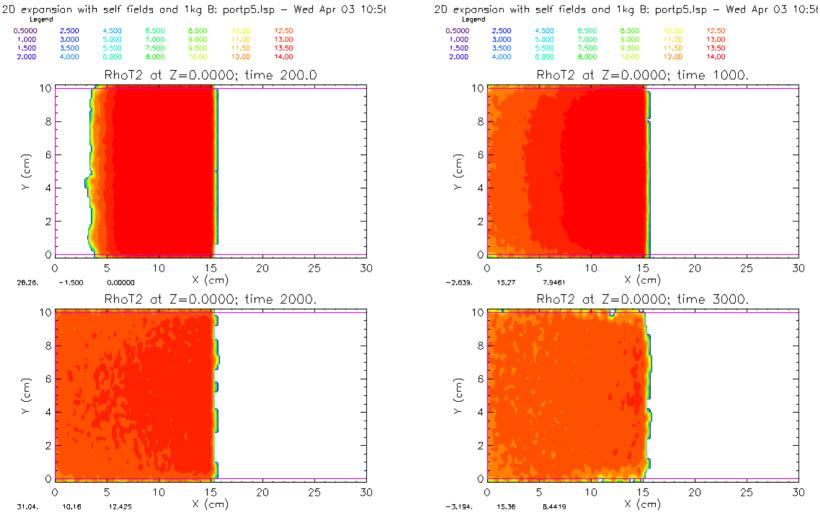
2D expansion with self fields and 1kg B; portp5.lsp — Wed Apr 03 10:5t

2D expansion with self fields and 1kg B: portp5.lsp — Wed Apr 03 10:5t


70 Gauss self B

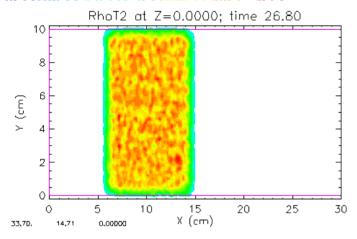

1.6 kV/cm self E

Ions are turned in space charge field


• Ion velocity stagnates at 15.4 cm, decays to wall

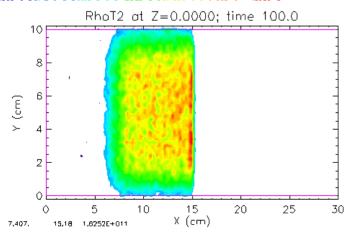
2D expansion with self fields and 1kg B: portp5.lsp — Wed Apr 03 10:5t 2D expansion with self fields and 1kg B: portp5.lsp — Wed Apr 03 10:5t

Snapshots of B_y run - plasma stagnates at roughly x = 18 cm

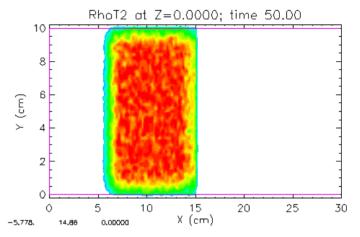

0.4 Beta Plasma Calculation

- Plasma temperature is increased to 100 eV with a 9 cm/μs forward-directed velocity
- Simulation is much faster than increasing density by 10 but keeping T fixed
- Same external magnetic field topology

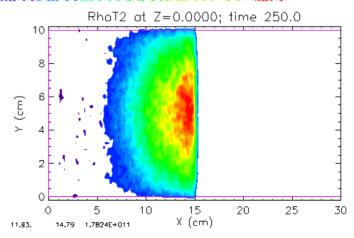
100-eV plasma with v = 9 cm/ μ s


2D expansion with self fields and 1kg B; portp5.lsp — Tue Apr 9 12:33

1.000E+012 1.873E+013 3.646E+013 5.420E+013 7.193E+013 8.966E+013 1.074E+014 5.433E+012 2.316E+013 4.990E+013 5.483E+013 7.633E+013 9.409E+013 1.118E+014 9.866E+012 2.760E+013 4.533E+013 6.306E+013 9.853E+013 1.183E+014 1.430E+013 3.203E+013 4.976E+013 8.749E+013 5.523E+013 1.030E+014 1.207E+014

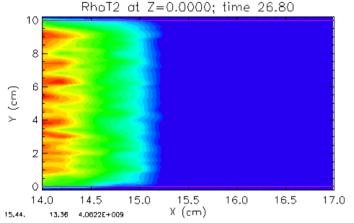

2D expansion with self fields and 1kg B; portp5.lsp — Tue Apr 9 14:44

1,000E+012 2,001E+013 3,902E+013 5,803E+013 7,704E+013 9,604E+013 1,151E+014 5,752E+012 2,476E+013 4,377E+013 6,273E+013 B,179E+013 1,005E+014 1,198E+014 1,050E+013 2,951E+013 4,652E+013 6,753E+013 B,654E+013 1,055E+014 1,246E+014 1,526E+013 3,427E+013 5,327E+013 7,228E+013 9,129E+013 1,105E+014 1,293E+013 9,129E+013 1,105E+014 1,293E+013 9,129E+013 1,105E+014 1,293E+013 9,129E+013 1,105E+014 1,293E+013 9,129E+013 9,129E+013

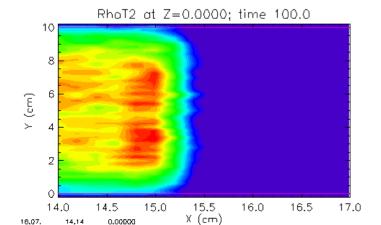

2D expansion with self fields and 1kg B; portp5.lsp — Tue Apr 9 12:33

1.000E+012 1.865E+013 3.231E+013 4.796E+013 6.362E+013 7.927E+013 9.493E+013 4.914E+012 2.657E+013 3.232E+013 5.136E+013 6.755E+013 8.319E+013 9.884E+013 8.827E+012 2.448E+013 4.014E+013 5.579E+013 7.144E+013 8.710E+013 1.028E+014 1.274E+013 2.840E+013 4.405E+013 5.970E+013 7.536E+013 9.101E+013 1.028E+014

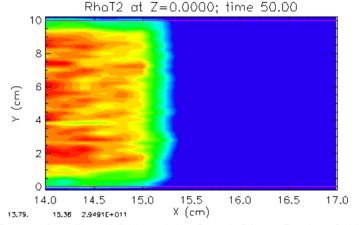
2D expansion with self fields and 1kg B: portp5.lsp — Tue Apr 9 14:44


1.000E+012 2.014E+013 3.929E+013 5.843E+013 7.757E+013 9.671E+013 1.159E+014 1.350E+014 5.786E+012 2.493E+013 4.407E+013 6.321E+013 B.236E+013 1.015E+014 1.206E+014 1.057E+013 2.971E+013 4.886E+013 6.800E+014 B.271E+013 1.015E+014 1.254E+014 1.536E+013 3.450E+013 5.364E+013 7.279E+013 9.193E+013 1.111E+014 1.302E+014

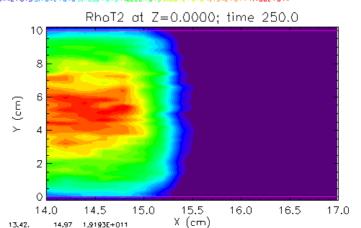
Close up of ion density shows stagnation at 15.5 cm


2D expansion with self fields and 1kg B: portp5.lsp — Tue Apr 9 12:33

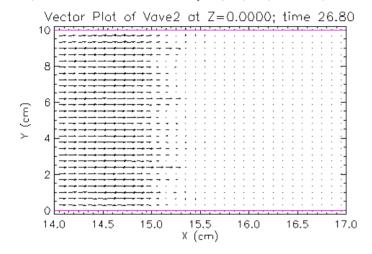
1.000E+0121.715E+0133.330E+0134.944E+0136.559E+0138.174E+0139.789E+013 5.037E+0122.119E+0133.733E+0135.346E+0136.963E+0138.576E+0131.199E+014 9.074E+0122.522E+0134.137E+0135.752E+0137.367E+0138.961E+0131.060E+014 1.311E+0132.926E+0134.541E+0136.156E+0137.770E+0139.365E+0131.100E+014


2D expansion with self fields and 1kg B: portp5.lsp — Tue Apr 9 14:44

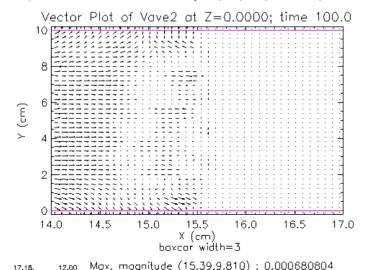
1.000E+012 2.011E+013 3.922E+013 5.833E+013 7.744E+013 9.656E+013 1.157E+014 5.776E+012 2.489E+013 4.400E+013 6.31E+013 6.222E+013 1.013E+014 1.204E+014 1.056E+013 2.967E+013 4.678E+013 6.789E+013 8.700E+013 1.061E+014 1.252E+014 1.533E+013 3.444E+013 5.556E+013 7.287E+013 9.178E+013 1.109E+014 1.300E+014


2D expansion with self fields and 1kg B: portp5.lsp — Tue Apr 9 12:33

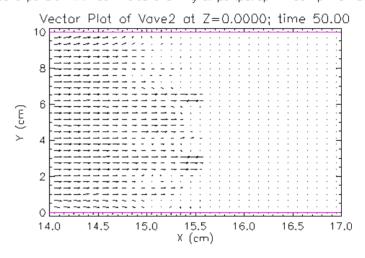
1,000E+012 1,567E+013 3,033E+013 4,500E+013 5,967E+013 7,433E+013 B,900E+013 4,667E+012 1,933E+013 3,400E+013 4,867E+013 6,333E+013 7,400E+013 9,267E+013 8,333E+013 7,600E+013 9,633E+013 7,607E+013 8,633E+013 7,607E+013 8,633E+013 7,007E+013 8,633E+013 7,007E+013 8,635E+013 1,000E+014 8,035E+013 1,000E+014 8,035E+014 8,035E+014


2D expansion with self fields and 1kg B: portp5.lsp — Tue Apr 9 14:44

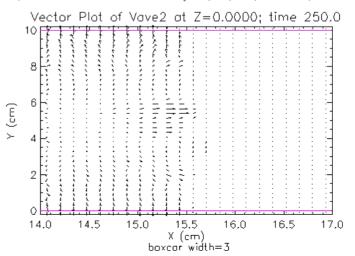
1.000E+012 2.159E+013 4.219E+013 6.278E+013 8.337E+013 1.040E+014 1.248E+014 8.148E+012 2.674E+014 1.237E+014 1.30E+013 3.789E+013 3.091E+014 1.297E+014 1.30E+013 3.789E+013 5.248E+013 7.307E+013 9.387E+013 1.143E+014 1.349E+014 1.



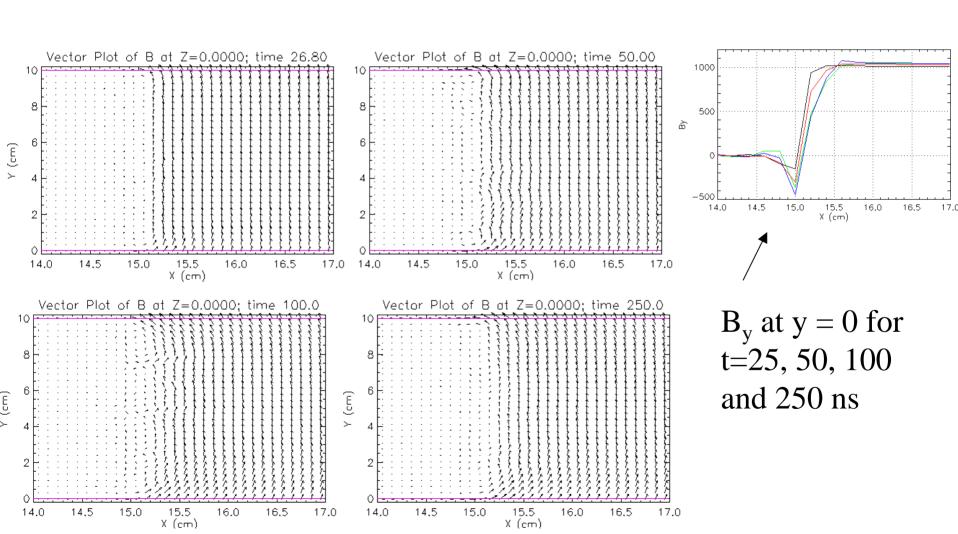
Mean ion velocity turns towards outer wall by 250 ns


2D expansion with self fields and 1kg B; portp5.lsp — Tue Apr. 9 12:33

15.77. 11.16 Max. magnitude (14.55,9.680): 0.000518155
2D expansion with self fields and 1kg B: portp5.lsp — Tue Apr 9 14:44



2D expansion with self fields and 1kg B: portp5.lsp - Tue Apr 9 12:33


14.82. 12.04 Max. magnitude (15.15,10.03): 0.000467308

2D expansion with self fields and 1kg B; portp5.lsp — Tue Apr 9 14:44

и. _{12,48} Max. magnitude (15,16,9,810) : 0,000729885

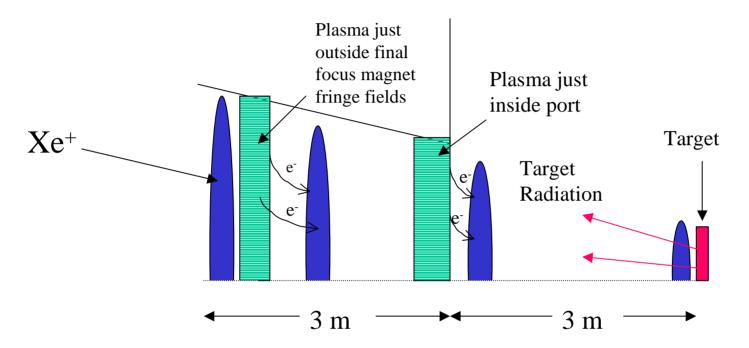
Plasma pushes fields back 5 mm before stagnating and decaying

Conclusion

- 2D calculations predict expected plasmas diverted by a moderate strength magnetic field (1 kG)
- B field need extend no further than a few cm beam deflection is small of order 10⁻⁵ radian
- 3D effects generally weaken confinement may necessitate somewhat larger required magnetic fields than 2D calculations but expect same qualitative behavior.

Effect of Pre-Neutralization and Protoionization on Transport

W. Sharp and S. S. Yu

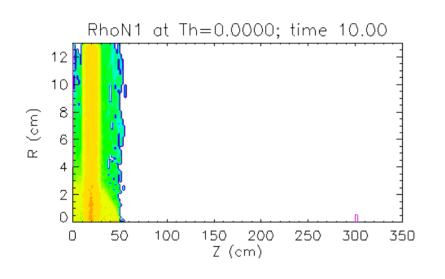

D. R. Welch and D. V. Rose

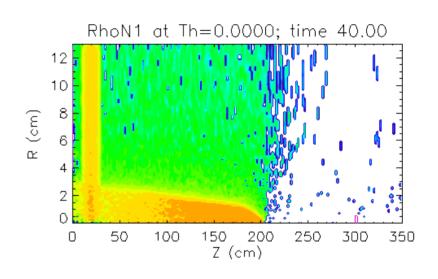
Presented at the ARIES Project Meeting

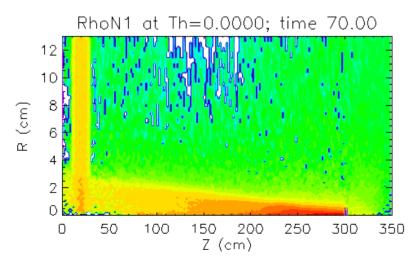
April 22-23, 2002

Research supported by the DOE through PPPL and the HIF VNL

Progress on an integrated calculation for both foot and main pulse with NBT


Do the benefits of a local plasma extend to the both foot and main pulses?

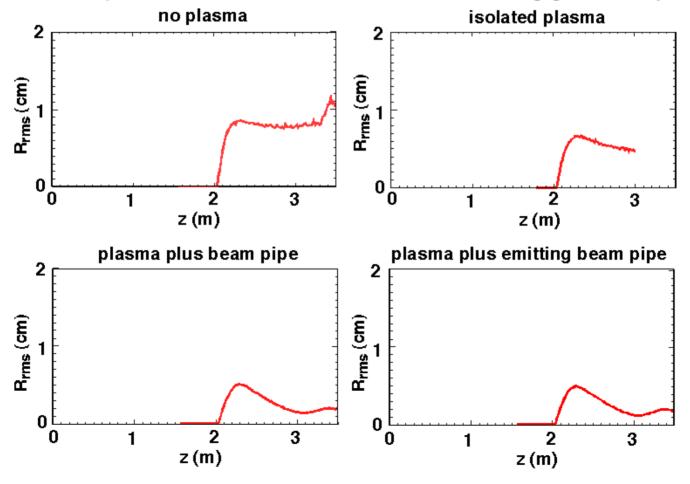

What are the effects of photo ionization and stripping?


Beam/Chamber Parameters

- Foot Pulse: Pb 3 GeV, 870 A, (K=5x10⁻⁵) 30ns
- Main Pulse Xe 2.4 GeV, 2.8 kA (K=1.8x10⁻⁴) 8 ns
- 1.1 pi-mm-mrad normalized emittance
- 0.6 mTorr BeF₂ in chamber (ionization and stripping)
- With and without pre-neutralization by 10-cm long 2.5x10¹²-cm⁻³ density plasma

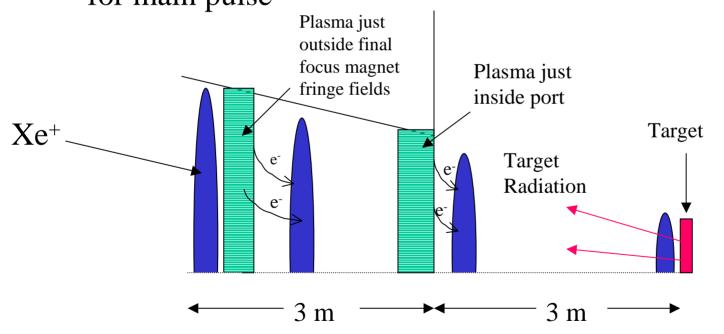
Plasma electrons are effective neutralizers even with ion stripping

Log n_e


Legend					
0.5000	2,848	5,198	7,543	9,891	12,24
1,087	3,435	5.783	8.130	10.48	12,83
1,674	4,022	6.370	8,717	11,07	13,41
2,261	4,609	6.957	9,304	11,85	14,00

Plasma pre-neutralization improves transport dramatically

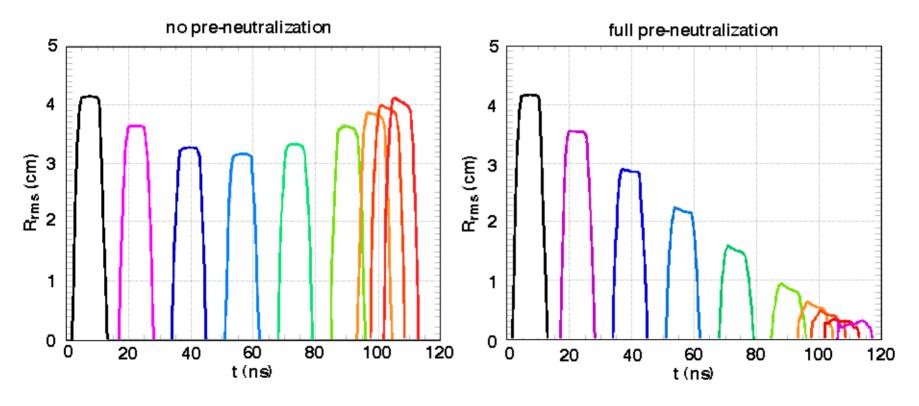
Snapshots near focus of 870-A Pb foot pulse in 7 x 10¹² cm⁻³ BeF₂


- conducting beam pipe near plasma significantly improves neutralization
- emission from beam pipe makes small additional improvement
- effects of pre-neutralization decrease with increasing gas density

Lsp simulation with plasma pre-neutralization, photoionization

• 6-m long, 2-plasma foot (in progress) and main pulses

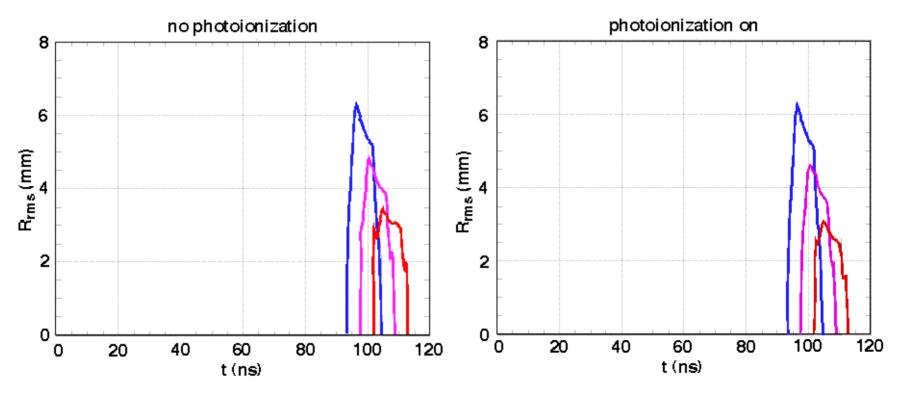
 impact only and including photo ionization and stripping for main pulse



Pre-neutralization also works at higher perveance

results for "realistic" 2.8-kA Xe main pulse in 7 x 10¹² cm⁻³ BeF₂

- tapering 3 m emitting beam pipe with 10-cm plasma layer at each end
- 3-m chamber after beam pipe with plausible gas-vacuum interface
- pre-neutralization makes dramatic improvement in transport


• final 2.5 mm radius is close to value required by distributed-radiator target

What does photoionization do?

results for "realistic" 2.8 kA Xe main pulse in 7 x 10¹² cm⁻³ BeF₂

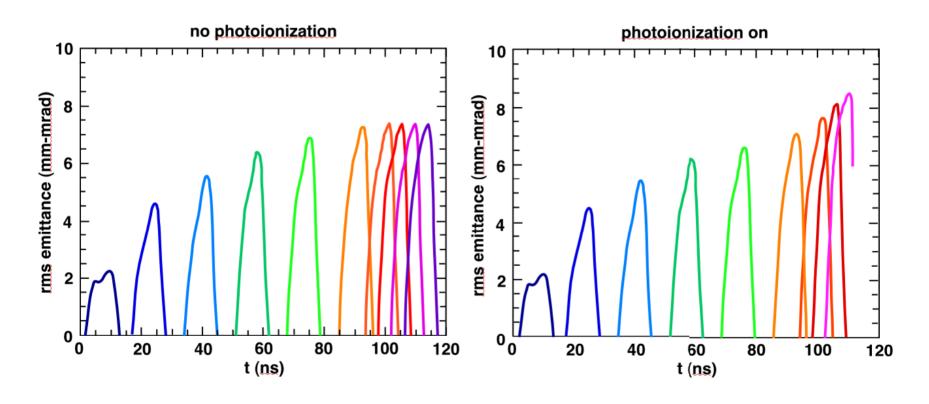
- target heating by 30-ns foot pulses in other entry ports
- LSP currently allows only single ionization of background gas
- photoionization reduces focal spot by about 15%


- neutralization by photoionization plasma is offset by increased beam charge
- inclusion of multiple gas ionization would improve situation

How does photoionization affect beam charge?

results for "realistic" 2.8 kA Xe main pulse in 7 x 10¹² cm⁻³ BeF₂

- time histories of beam charge states
- stripping artificially stopped 20 cm before target for numerical reasons
- photoionization significantly increases average charge state near target


effect of higher charge state is limited by small distance to target

How does photoionization affect beam emittance?

results for "realistic" 2.8 kA Xe main pulse in 7 x 10¹² cm⁻³ BeF₂

- time histories of beam rms emittance at select axial locations
- higher charge-state near target leads to 20% emittance increase

effect of higher emittance is offset by better neutralization

Conclusions

- Pre-neutralization from plasma improves chamber transport efficiency
 - Both foot and main pulses benefit
- Given pre-neutralizing plasma, lower chamber pressure helps beam transport for both foot and main pulses
- Photo ionization assists main pulse transport
 - photo stripping increases beam charge state and emittance near target, tempers the effect to a 15% spot improvement
 - inclusion of multiple gas ionization should improve spot further