Summary of FS Lifetime Assessment and Activation Analysis

L. El-Guebaly
Fusion Technology Institute
University of Wisconsin - Madison

ARIES E-Meeting October 10, 2002

(Full presentation posted @ http://fti.neep.wisc.edu/FTI/POSTERS/OCT2002/lae_lifetime.pdf)

Objectives

- Assess nuclear performance of structure-free blanket concept using ARIES design rules
 - Lifetime of FS based on radiation damage:
 - dpa
 - Helium production
 - Breeding potential of candidate breeders:
 - Flibe
 - Flinabe.
 - Waste disposal rating of FS-based components (shield, nozzles, feeding tubes).
- Estimate reduction in waste for thick liquid wall concept.

ARIES Requirements and Design Limits

dpa*:

ODS-FS structure ≤ 200 dpa

304-SS structure \leq 25 dpa

Overall TBR ≥ 1.08

Helium production for reweldability of FS ≤ 1 He appm

WDR for Class C low level waste ≤ 1

^{*} Thermal creep strength @ EOL could be more restrictive than radiation damage, per M. Billone (ANL).

Key Parameters

Target yield 458.7 MJ

Rep rate 4 Hz

Average source neutron energy 11.75 MeV

Penetrations coverage 3%

Plant lifetime 40 FPY

Availability 85%

Schematic of Radial Build

83 cm Thick Flibe and 150 cm Thick Flinabe Blankets Meet ARIES Breeding Requirement

Blanket Composition: 58% Liquid, 42% void

dpa Limit Can be Met with 85-130 cm Flibe Blanket and 150 cm Flinabe Blanket

Blanket Composition: 58% Liquid, 42% void

- 85 cm Flibe blanket meets FS 200 dpa limit.
- 130 cm Flibe *overbreeding* blanket meets 304-SS 25 dpa limit.
- 1.5 m Flinabe blanket meets both limits.

Lifetime of Steel Structure Based on Radiation Damage

Breeder	<u>Flibe</u>		Flinabe
Blanket Thickness (meets both breeding requirement and dpa limit)	85 cm	130 cm*	150 cm
Overall TBR	1.08	1.23	1.08
ODS-FS	40 FPY	_	>> 40 FPY
304-SS	_	40 FPY	55 FPY
* Overbreeding blanket.			

Helium Production is Excessive

Innermost shield layer/nozzles/feeding tubes cannot be re-welded at any time during operation.

Steel Composition (in wt%)

	ODS-12YWT-FS* (Experimental Alloy)	ODS M-F82H-FS**	304-SS#
Fe	83.818	87.891	70.578
C	0.052	0.04	0.046
N	0.014	0.005	0.038
O Si P S	0.16	0.13	-
Si	0.1	0.24	0.47
P	_	0.005	0.026
\mathbf{S} .	0.001	0.002	0.012
Ti	0.35	0.09	0.03
V	0.01	0.29	_ 17.7
Cr	12.58	8.7	17.7
Mn	0.05	$0.45 \\ 0.0028$	1.17 0.1
Co Ni	$\frac{-}{0.27}$	0.0028	9.3
Cu	$0.27 \\ 0.02$	0.0474	0.2
Nb	0.02	0.00033	- -
Mo	$0.01 \\ 0.02$	0.0021	0.33
Ta		0.08	_
W	2.44	2	_
Y	0.16	0.7	_

^{*} R. Klueh et al., "Microstructure and Mechanical Properties of Oxide Dispersion-Strengthened Steels" fusion materials semiannual progress report for the period ending June 30, 2000 (DOE/ER-0313/28), pp. 123-130. Fe-12Cr-3W-0.4Ti-0.25Y₂O₃ (12YWT) experimental alloy.

^{**} IEA Modified F82H FS + 0.25wt% Y₂O₃, per M. Billone (ANL). Other elements include: B, Al, As, Pd, Ag, Cd, Sn, Sb, Os, Ir, Bi, Eu, Tb, Dy, Ho, Er, U.

[#] Starfire report: C. Baker et. al, "Starfire-A Commercial Tokamak Fusion Power Plant Study," Argonne National Laboratory Report, ANL/FPP-80-1 (1980).

All Steel Alloys Generate High Level Waste

- ODS-MF82H-FS offers lowest WDR.
- Thicker Flinabe blanket results in lower WDR.
- Main contributors to WDR: ⁹⁴Nb (from Nb), ⁹⁹Tc (from Mo), and ¹⁹²ⁿIr (from W).
- Potential solutions to meet waste requirement (WDR < 1):
 - Control Mo and Nb,
 - Thicken blanket (and readjust TBR).

Effect of Mo and Nb on WDR

- In practice, Mo and Nb impurities cannot be zeroed out. Actual level depends on \$/kg to keep Mo and Nb < 1 wppm.
- Flibe shield with Mo/Nb control should be > 50 cm thick to qualify as LLW.
- Flinabe shield without Mo/Nb control meets waste requirement if ≥ 45 cm thick.
- Nozzles/feeding tubes generate high level waste unless protected by thicker blanket or mixed with shield and disposed as single unit at EOL.

Revisiting Logic Behind Thick Liquid Wall Concept

- Thick liquid wall concept developed to eliminate blanket replacement, reduce waste, and increase availability by 10% ⇒ 20% lower COE, per R. Moir (UCRL-JC-115748, April 1994).
- In IFE solid wall designs, blanket generates only 2-4% of total waste
 - ⇒ Thick liquid wall concept offers small waste reduction. (same conclusion made for MFE APEX project)
 - ⇒ No significant difference in waste volume generated by thin and thick liquid wall concepts.

Conclusions

- Class C LLW requirement is more restrictive than breeding and dpa requirements.
- No breeding problem identified for Flibe and Flinabe.
- 85/150 cm thick Flibe/Flinabe blankets provide TBR of 1.08 and meet FS dpa limit.
- Helium production in FS is excessive and precludes FS reweldability during operation.
- All steel alloys produce high level waste (WDR >> 1).
 Low level waste can be achieved with combination of Mo/Nb control and blanket/shield adjustment.
- Nozzles/Feeding tubes need additional protection to qualify as LLW unless combined with shield.
- Both **thin** and **thick** liquid wall concepts generate ~ same volume of waste.