Plan for Engineering Study of ARIES-CS

Presented by A. R. Raffray University of California, San Diego

ARIES Meeting
UCSD
San Diego, CA
January 8-10, 2003

Background

- Assessment of Compact Stellarator option as a power plant to help:
 - Advance physics and technology of compact stellarator concept and address concept attractiveness issues in the context of power plant studies
 - Identify optimum compact stellerator configuration for power plant
 - NCSX and QSX plasma/coil configurations as starting point
 - But optimum plasma/coil configuration for a power plant may be different

ARIES-CS Program is a Three-Year Study

FY03: Development of Plasma/coil Configuration Optimization Tool

- 1. Develop physics requirements and modules (power balance, stability, ☐ confinement, divertor, *etc.*)
- 2. Develop engineering requirements and constraints.
- 3. Explore attractive coil topologies.

FY04: Exploration of Configuration Design Space

- 1. Physics: ☐, aspect ratio, number of periods, rotational transform, sheer, *etc*.
- 2. Engineering: configurationally optimization, management of space between plasma and coils.
- 3. Choose one configuration for detailed design.

FY05: Detailed system design and optimization

Year 1: Develop Engineering Requirements and Constraints

Design Process: Optimize design configuration and machine parameters to minimize COE while accommodating design requirements

Design Configuration (Engineering)

- Component Configurations:
 - Blanket
 - Shield
 - Vacuum Vessel
 - Divertor
 - Coils
- Maintenance Scheme

Machine Parameters (Physics, Coil System)

- Space between coils
- Minimum plasma edge to coil distance
- Size (major radius)
- Fusion power

Design Requirements and Performance Parameters

- Tritium breeding
- Shielding requirements
 - Magnet configuration and heating limits
 - Reweldability
- Thermal efficiency
- Maintenance requirements
 - Size and weight of blanket unit
 - Access
- Safety requirements

Proposed Plan for Engineering Activities

Engineering Activities: Year 1

- Perform Scoping Assessment of Different Maintenance Schemes and Design Configurations
 - Three Possible Maintenance Schemes: (UCSD, PPPL, S. Malang, L. Waganer)
 - 1. Sector replacement including disassembly of modular coil system
 - 2. Replacement of blanket modules through maintenance ports arranged between all modular coils
 - 3. Replacement of blanket modules through small number of designated maintenance ports (using articulated boom)
 - Each maintenance scheme imposes specific requirements on machine and coil geometry

Engineering Activities: Year 1

- Scoping analysis of possible blanket/shield/divertor configurations compatible with maintenance scheme and machine geometry, including the following three main classes: (UCSD, UW, INEEL, Georgia Tech., S. Malang)
 - 1. Self-cooled liquid metal blanket(LiPb) (might need He-cooled divertor depending on heat flux)
 - a) with SiC_f/SiC
 - b) with insulated ferritic steel and He-cooled structure
 - 2. He-cooled liquid breeder blanket (or solid breeder) with ferritic steel and He-cooled divertor
 - 3. Flibe-cooled ferritic steel blanket (might need He-cooled divertor depending on heat flux)
 - Evolve coil configuration(s) (PPPL, MIT)
 - Material and thicknesses
 - Radius of curvature, shape
 - Space and shielding requirements

Proposed Analysis Procedure

- Start with coil and plasma shape from NCSX
 - Need alternate concepts from physics (coils) to study better extrapolation to power plant

- Perform scoping maintenance scheme/configuration analysis by scaling (?):
 - Size of machine
 - Distance from plasma to coil
 - Distance between coils
 - Wall load (peak, average, at minimum distance between coil and plasma)

Need divertor guidelines (heat load, geometry)

Engineering Activities

Year 2: Configuration Optimization Including Plasma/Coil Space Management

- Assess and select best maintenance scheme/configuration pairings
- Optimize each selection including integration of machine/coil parameters and geometry
- Select most attractive integrated pairing(s) for detailed design study

Year 3: Perform Detailed Design Study and Optimization for ARIES-CS Power plant

