Summary of ARIES Power Core Unit Costs ## L. Waganer The Boeing Company 4-5 September 2004 ARIES Meeting at UCSD ### **Background** - At the September 2004 meeting, I presented the costs for a set of materials for one of the candidate blanket/ maintenance schemes. - Since then, I have expanded the cost basis to include the other configurations - The cost basis is a combination of data from prior studies as well as new material quotes - Also, I have prepared a trade study assessment tool for the proposed blanket concepts to help document the rationale for the selection into the next study phase #### **Candidate Power Core Concepts** | Designation | Α | В | С | D1 | D2A | D2B | E | |------------------------|---|-------------------|---------------------------------|-------------------------------------|-------------------------|---|---| | Description | Self Cooled
Molten Salt | Self Cooled LiPb | Li Dual Coolant | LiPb Dual Coolant | LiPb Dual Coolant | LiPb Dual Coolant | Ceramic Breeder | | VV location | Internal to Coils | Internal to Coils | External to Coils | Internal to Coils | External to Coils | External to Coils | Internal to Coils | | First Wall,
Blanket | ODS FS
Be Pebbles
Flibe (30% Li6) | Li17Pb83 (90%Li6) | ODS/RA FS
Li (natural)
He | ODS/RA FS
Li17Pb83(90%Li6)
He | ` ' | ODS/RA FS
Li17Pb83(90%Li6)
He | ODS/RA FS
Li4SiO4 20-90Erchd
Be Pebbles
He | | Local
Shield | RAFS
WC plates
Flibe (30% Li6) | | • | RAFS
WC plates
He | He | RAFS
WC plates
He
Borated H ₂ O (LT Shld) | RAFS
WC plates
He | | Shield | Borated FS Plates | | Borated FS plates | Borated FS Plates | Borated FS Plates
He | RAFS
Borated FS Plates
He
H ₂ O(LT ShId) | RAFS
Borated FS plates
He | | Vac Vessel | RAFS
Borated Water | | RAFS
He | _ | RAFS
He | RAFS
He | RAFS
Borated FS Plates
H ₂ O | Cost data presented 9/2004 This is the complete list of concepts the team has defined and analyzed for Phase I. #### **Unit Costs Data for Systems Code** #### - First Three Candidate Systems - | Designation | А | 1 | | В | | | C | ; | | | | | |--------------------|-------------------|----------------|-------|-------------------|----------|-------|-------------------|-------------|-------|--|--|--| | Description | Self Cooled | Molten S | alt | Self Coo | led LiPb | | Li Dual Coolant | | | | | | | VV location | Internal to Coils | \$/kg | kg/m3 | Internal to Coils | \$/kg | kg/m3 | External to Coils | \$/kg | kg/m3 | | | | | First Wall, | ODS FS | \$103.00 | 7800 | SiC/SiC | \$510.00 | 3200 | ODS/RA FS | \$103.00 | 7800 | | | | | Blanket | Be Pebbles | \$250.00 | 1848 | Li17Pb83 (90%Li6) | \$20.00 | 8897 | Li (natural) | \$55.00 | 473 | | | | | | Flibe (30% Li6) | \$40.88 | 1987 | , | | | He | | | | | | | | , | | | | | | | | | | | | | Local | RAFS | \$103.00 | 7800 | Sic/SiC | \$510.00 | 3200 | RAFS | \$103.00 | 7800 | | | | | Shield | WC plates | \$30.00 | 15500 | WC Plates | \$30.00 | 15500 | WC plates | \$30.00 | 15500 | | | | | Omora. | Flibe (30% Li6) | \$40.88 | 1987 | Li17Pb83 (90%Li6) | | 8897 | He | , , , , , , | | | | | | | (00 /0 =.0) | V 10.00 | | | V | | | | | | | | | Shield | RAFS | \$78 | 7800 | SiC/SiC | \$510.00 | 3200 | RAFS | \$78.00 | 7800 | | | | | | Borated FS Plates | \$31.00 | 7800 | Borated FS Plates | \$31.00 | 7800 | Borated FS plates | \$31.00 | 7800 | | | | | | Flibe (30% Li6) | \$40.88 | 1987 | Li17Pb83 (90%Li6) | \$820.00 | 8897 | He | | | | | | | | , | | | \ / / | · | | | | | | | | | Vac Vessel | RAFS | \$56.00 | 7800 | RAFS / | \$56.00 | 7800 | RAFS | \$56.00 | 7800 | | | | | | Borated Water | ~ \$0 | 1000 | Borated FS Plates | \$31.00 | 7800 | He | \$31.00 | 7800 | | | | | | | * " | | H ₂ O | ~ \$0 | | | | | | | | | | | | | / | | | | | | | | | - New ROM quote for Beryllium from Brush Wellman was provided, \$220-\$275/kg - Refinement of natural Lithium cost is in work - My prior estimate for Li17Pb83 90% enriched was in error, should be atom%. Revised number would be much lower - Historical enriched lithium and/LiPb estimates from MARS, UWTOR-M, and BCSS (circa 1980-1983) suggest \$16-20/kg for 90% enriched Li17Pb83 #### **Unit Costs Data for Systems Code** #### - Final Four Candidate Systems - | Designation | D' | 1 | | D2 | A | | D2B | | | E | | | | | |-----------------|---------------------------------|---------------------|-------|-------------------|---------------------|-------|---|-------------------------------|-------|---------------------------------|--------------------------------|----------------------|--|--| | Description | | Coolant | | LiPb Dual Coolant | | | LiPb Dual C | oolant | | Ceramic Breeder | | | | | | VV location | Internal to Coils | \$/kg | kg/m3 | External to Coils | \$/kg | kg/m3 | External to Coils | External to Coils \$/kg kg/m3 | | Internal to Coils | \$/kg | kg/m3 | | | | Blanket | | \$103.00
\$20.00 | 8897 | | \$103.00
\$20.00 | 8897 | | \$103.20
\$20.00 | 8897 | | \$103.00
\$ TBD
\$250.00 | 7800
8897
1848 | | | | Local
Shield | RAFS
WC plates
He | \$103.00
\$30.00 | 15500 | _ | \$103.00
\$30.00 | 15500 | RAFS
WC plates
He
Borated H ₂ O (LT Shld) | \$103.00
\$30.00
~ \$0 | 15500 | RAFS
WC plates
He | \$103.00
\$30.00 | 7800
15500 | | | | Shield | RAFS
Borated FS Plates
He | \$78.00
\$31.00 | 7800 | _ | \$78.00
\$31.00 | 7800 | _ | Ċ | | RAFS
Borated FS plates
He | \$78.00
\$31.00 | 7800
7800 | | | | Vac Vessel | • | \$56.00
\$31.00 | | | \$56.00
\$0 | | RAFS
He | \$5600
\$0 | 0 | RAFS
Borated FS plates
He | \$56.00
\$31
~ \$0 | 7800
0
1000 | | | I have a new quote for natural Lithium Orthosilicate (\$44/kg) and need to convert it to 90% enriched Lithium Orthosilicate. #### **Unit Costs Data for Systems Code** Link to Cost Database # Blanket Evaluation and Selection Process ## We Should Reach Consensus On Key Blanket Attributes For Selection and Their Importance #### **Key Factors in Blanket Concept Selection** | Factor | Discussion | Value 0-5 | |--------------------------------|--|-----------| | Tritium Breeding Ratio | All designed to satisfy 1.1 criteria; may need enriched lithium or beryllium | 2 | | Operating Temperature | Determines thermal efficiency and overall plant performance | 4 | | Complexity, Technical Maturity | Influences development risk and cost | 3 | | Inherent Safety | All designs to be safe, but some are more inherently safe, e.g. dual coolant designs | 2 | | Pumping Power | Higher pumping power reduces net power | 1 | | Thickness of Breeding Zone | Influences cost of power core components | 2 | | Radioactive Waste Products | Influences public acceptance and waste disposal costs | 2 | | Service Lifetime | All blankets are designed for 40 FPY | 0 | | Inherent Reliability | Too early to define data | 0 | ARIES-CS #### This Trade Study Spreadsheet Illustrates the Evaluation Process - Data is for illustration only - | | | | | | Option A | | Option B | | Option C | | Option D1 | | Option D2A | | Option D2B | | Option E | | | |-----------------------------------|----|------------------------|----------------------|----------------------|-----------------------|----------|-------------------------|-------|--------------------|------------------------|-----------|---------------------------|------------|----------------|------------------------------------|-------|----------|-----------------------|------| | | | Poor | Adequate | Good | Excellent | Flibe, l | Cld,
FS, Be,
I VV | | Cld,
SiC,
VV | Dual C
He, L
Ext | i, FS, | Dual C
He, LiF
Intl | b, FS, | He, Lif
Ext | ooled,
Pb, FS,
VV,
d Shld | Ext | , | He, FS
Cerm
Ext | Brdr | | Evaluation
Parameter | Wt | 1 | 2 | 3 | 4 | UnWtd | Wtd | Tritium Breeding
Ratio | 2 | Needs Be
Multiplier | 90% Enrch
Lithium | 30% Enrch
Lithium | Natural
Lithium | 1 | 2 | 2 | 4 | 4 | 8 | 2 | 4 | 2 | 4 | 2 | 4 | 1 | 2 | | Operating
Temperature, °C | 4 | >600 | 600-750 | 750-900 | 1000-1200 | 1 | 4 | 4 | 16 | 2 | 8 | 2 | 8 | 2 | 8 | 2 | 8 | 2 | 8 | | Complexity,
Technical Maturity | 3 | Cmpx,
Immature | Cmpx,
Low Mat | Cmpx,
Mod Mat | Low Cmpx,
Good Mat | | 9 | 3 | 9 | 2 | 6 | 2 | 6 | 2 | 6 | 2 | 6 | 1 | 3 | | Inherent Safety | 2 | Poor | Adequate | Good | Excellent | 2 | 4 | 2 | 4 | 4 | 8 | 4 | 8 | 4 | 8 | 4 | 8 | 4 | 8 | | Pumping Power | 1 | High | Moderate | Mod. Low | Low | 1 | 1 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 4 | 4 | | Thickness of
Breeding Zone, m | 2 | >1.3 | 1.2 - 1.3 | 1.1 - 1.2 | < 1.1 | 2 | 4 | 3 | 6 | 3 | 6 | 3 | 6 | 3 | 6 | 3 | 6 | 4 | 8 | | Radioactive
Waste Products | 2 | Poor | Adequate | Good | Excellent | 2 | 4 | 2 | 4 | 3 | 6 | 2 | 4 | 2 | 4 | 2 | 4 | 4 | 8 | | Sum | 16 | 16 | 32 | 48 | 64 | | 28 | | 46 | | 45 | | 39 | | 39 | | 39 | | 41 | The closeness of the scores suggest either a) the blankets are similar in performance b) the evaluation parameters/weightings are not indicative of the true discriminators, or c) the evaluation scores are wrong