

Summary of ARIES Power Core Unit Costs

L. Waganer The Boeing Company

4-5 September 2004

ARIES Meeting at UCSD

Background

- At the September 2004 meeting, I presented the costs for a set of materials for one of the candidate blanket/ maintenance schemes.
- Since then, I have expanded the cost basis to include the other configurations
- The cost basis is a combination of data from prior studies as well as new material quotes
- Also, I have prepared a trade study assessment tool for the proposed blanket concepts to help document the rationale for the selection into the next study phase

Candidate Power Core Concepts

Designation	Α	В	С	D1	D2A	D2B	E
Description	Self Cooled Molten Salt	Self Cooled LiPb	Li Dual Coolant	LiPb Dual Coolant	LiPb Dual Coolant	LiPb Dual Coolant	Ceramic Breeder
VV location	Internal to Coils	Internal to Coils	External to Coils	Internal to Coils	External to Coils	External to Coils	Internal to Coils
First Wall, Blanket	ODS FS Be Pebbles Flibe (30% Li6)	Li17Pb83 (90%Li6)	ODS/RA FS Li (natural) He	ODS/RA FS Li17Pb83(90%Li6) He	` '	ODS/RA FS Li17Pb83(90%Li6) He	ODS/RA FS Li4SiO4 20-90Erchd Be Pebbles He
Local Shield	RAFS WC plates Flibe (30% Li6)		•	RAFS WC plates He	He	RAFS WC plates He Borated H ₂ O (LT Shld)	RAFS WC plates He
Shield	Borated FS Plates		Borated FS plates	Borated FS Plates	Borated FS Plates He	RAFS Borated FS Plates He H ₂ O(LT ShId)	RAFS Borated FS plates He
Vac Vessel	RAFS Borated Water		RAFS He	_	RAFS He	RAFS He	RAFS Borated FS Plates H ₂ O

Cost data presented 9/2004

This is the complete list of concepts the team has defined and analyzed for Phase I.

Unit Costs Data for Systems Code

- First Three Candidate Systems -

Designation	А	1		В			C	;				
Description	Self Cooled	Molten S	alt	Self Coo	led LiPb		Li Dual Coolant					
VV location	Internal to Coils	\$/kg	kg/m3	Internal to Coils	\$/kg	kg/m3	External to Coils	\$/kg	kg/m3			
First Wall,	ODS FS	\$103.00	7800	SiC/SiC	\$510.00	3200	ODS/RA FS	\$103.00	7800			
Blanket	Be Pebbles	\$250.00	1848	Li17Pb83 (90%Li6)	\$20.00	8897	Li (natural)	\$55.00	473			
	Flibe (30% Li6)	\$40.88	1987	,			He					
	,											
Local	RAFS	\$103.00	7800	Sic/SiC	\$510.00	3200	RAFS	\$103.00	7800			
Shield	WC plates	\$30.00	15500	WC Plates	\$30.00	15500	WC plates	\$30.00	15500			
Omora.	Flibe (30% Li6)	\$40.88	1987	Li17Pb83 (90%Li6)		8897	He	, , , , , ,				
	(00 /0 =.0)	V 10.00			V							
Shield	RAFS	\$78	7800	SiC/SiC	\$510.00	3200	RAFS	\$78.00	7800			
	Borated FS Plates	\$31.00	7800	Borated FS Plates	\$31.00	7800	Borated FS plates	\$31.00	7800			
	Flibe (30% Li6)	\$40.88	1987	Li17Pb83 (90%Li6)	\$820.00	8897	He					
	,			\ / /	·							
Vac Vessel	RAFS	\$56.00	7800	RAFS /	\$56.00	7800	RAFS	\$56.00	7800			
	Borated Water	~ \$0	1000	Borated FS Plates	\$31.00	7800	He	\$31.00	7800			
		* "		H ₂ O	~ \$0							
				/								

- New ROM quote for Beryllium from Brush Wellman was provided, \$220-\$275/kg
- Refinement of natural Lithium cost is in work
- My prior estimate for Li17Pb83 90% enriched was in error, should be atom%. Revised number would be much lower
- Historical enriched lithium and/LiPb estimates from MARS, UWTOR-M, and BCSS (circa 1980-1983) suggest \$16-20/kg for 90% enriched Li17Pb83

Unit Costs Data for Systems Code

- Final Four Candidate Systems -

Designation	D'	1		D2	A		D2B			E				
Description		Coolant		LiPb Dual Coolant			LiPb Dual C	oolant		Ceramic Breeder				
VV location	Internal to Coils	\$/kg	kg/m3	External to Coils	\$/kg	kg/m3	External to Coils	External to Coils \$/kg kg/m3		Internal to Coils	\$/kg	kg/m3		
Blanket		\$103.00 \$20.00	8897		\$103.00 \$20.00	8897		\$103.20 \$20.00	8897		\$103.00 \$ TBD \$250.00	7800 8897 1848		
Local Shield	RAFS WC plates He	\$103.00 \$30.00	15500	_	\$103.00 \$30.00	15500	RAFS WC plates He Borated H ₂ O (LT Shld)	\$103.00 \$30.00 ~ \$0	15500	RAFS WC plates He	\$103.00 \$30.00	7800 15500		
Shield	RAFS Borated FS Plates He	\$78.00 \$31.00	7800	_	\$78.00 \$31.00	7800	_	Ċ		RAFS Borated FS plates He	\$78.00 \$31.00	7800 7800		
Vac Vessel	•	\$56.00 \$31.00			\$56.00 \$0		RAFS He	\$5600 \$0	0	RAFS Borated FS plates He	\$56.00 \$31 ~ \$0	7800 0 1000		

I have a new quote for natural Lithium Orthosilicate (\$44/kg) and need to convert it to 90% enriched Lithium Orthosilicate.

Unit Costs Data for Systems Code

Link to Cost Database

Blanket Evaluation and Selection Process

We Should Reach Consensus On Key Blanket Attributes For Selection and Their Importance

Key Factors in Blanket Concept Selection

Factor	Discussion	Value 0-5
Tritium Breeding Ratio	All designed to satisfy 1.1 criteria; may need enriched lithium or beryllium	2
Operating Temperature	Determines thermal efficiency and overall plant performance	4
Complexity, Technical Maturity	Influences development risk and cost	3
Inherent Safety	All designs to be safe, but some are more inherently safe, e.g. dual coolant designs	2
Pumping Power	Higher pumping power reduces net power	1
Thickness of Breeding Zone	Influences cost of power core components	2
Radioactive Waste Products	Influences public acceptance and waste disposal costs	2
Service Lifetime	All blankets are designed for 40 FPY	0
Inherent Reliability	Too early to define data	0

ARIES-CS

This Trade Study Spreadsheet Illustrates the Evaluation Process

- Data is for illustration only -

					Option A		Option B		Option C		Option D1		Option D2A		Option D2B		Option E		
		Poor	Adequate	Good	Excellent	Flibe, l	Cld, FS, Be, I VV		Cld, SiC, VV	Dual C He, L Ext	i, FS,	Dual C He, LiF Intl	b, FS,	He, Lif Ext	ooled, Pb, FS, VV, d Shld	Ext	,	He, FS Cerm Ext	Brdr
Evaluation Parameter	Wt	1	2	3	4	UnWtd	Wtd	UnWtd	Wtd	UnWtd	Wtd	UnWtd	Wtd	UnWtd	Wtd	UnWtd	Wtd	UnWtd	Wtd
Tritium Breeding Ratio	2	Needs Be Multiplier	90% Enrch Lithium	30% Enrch Lithium	Natural Lithium	1	2	2	4	4	8	2	4	2	4	2	4	1	2
Operating Temperature, °C	4	>600	600-750	750-900	1000-1200	1	4	4	16	2	8	2	8	2	8	2	8	2	8
Complexity, Technical Maturity	3	Cmpx, Immature	Cmpx, Low Mat	Cmpx, Mod Mat	Low Cmpx, Good Mat		9	3	9	2	6	2	6	2	6	2	6	1	3
Inherent Safety	2	Poor	Adequate	Good	Excellent	2	4	2	4	4	8	4	8	4	8	4	8	4	8
Pumping Power	1	High	Moderate	Mod. Low	Low	1	1	3	3	3	3	3	3	3	3	3	3	4	4
Thickness of Breeding Zone, m	2	>1.3	1.2 - 1.3	1.1 - 1.2	< 1.1	2	4	3	6	3	6	3	6	3	6	3	6	4	8
Radioactive Waste Products	2	Poor	Adequate	Good	Excellent	2	4	2	4	3	6	2	4	2	4	2	4	4	8
Sum	16	16	32	48	64		28		46		45		39		39		39		41

The closeness of the scores suggest either a) the blankets are similar in performance b) the evaluation parameters/weightings are not indicative of the true discriminators, or c) the evaluation scores are wrong