LOCA/LOFA Analyses for Blanket and Shield Only Regions – LiPb/FS/He System

Carl Martin, Jake Blanchard

Fusion Technology Institute University of Wisconsin - Madison

ARIES-CS Project Meeting February 24-25, 2005

LOCA/LOFA Analysis Update

- 1. Results from LOCA/LOFA models with the gap between blanket and shield removed. The interface has been replaced with a perfect contact condition.
- 2. Maximum temperatures for LOCA and LOFA as a function of $\overline{\Gamma}$ are presented to help establish thermal operating limits.
- Preliminary results for the shield only regions will be discussed.

ANSYS FE Model and Boundary Conditions for Thermal Analyses

- Adiabatic boundary at back of vacuum vessel.
- Model is axisymmetric about plasma centerline and symmetric on sides. Gap between blanket and shield replaced with perfect contact condition.
- Emissivity of 0.3 assumed across vacuum gap and vacated cooling channels.
- All analyses assume there is no helium in channels.

Thermal Results LOFA for LiPb and Water and LOCA for He

- Model modified to remove vacuum gap between blanket and shield to agree with current configuration.
- Maximum temperature is 14 C lower with gap removed and perfect contact assumed.

1 cm Gap Between Blanket and Shield Maximum temperature – 715 C

740 C temp limit 720 640 560 Temperature (C First Wall Back Wall 400 Shield 320 240 160 Vacuum Vessel 80 11 h I1 mo I1 m 1 d 1.0E+05 1.0E-01 1.0E+07 1.0E+00 1.0E+02 1.0E+04 1.0E+06 Time (s)

Perfect Contact Between Blanket and Shield Maximum temperature – 701 C

Thermal Response for LOCA in Blanket/Shield and LOFA in Vacuum Vessel

- Maximum temperature is 23 C lower with ideal contact between blanket and shield compared to 1 cm vacuum gap case.
- Maximum temperature is higher for LOCA (706 C) compared to LOFA (701 C).

1 cm Gap Between Blanket and Shield Maximum temperature – 729 C

Perfect Contact Between Blanket and Shield Maximum temperature – 706 C

Thermal Results for Fusion Power Scaled by 1.5

- Maximum temperatures for ratio Γ =1.5 exceed 740 C FS limit.
- Again, maximum temperature is higher for LOCA than LOFA.

LOCA for LiPb

LOFA for LiPb

Variation of Maximum Temperature with $\overline{\Gamma}$

• 740 C FS limit exceeded for $\overline{\Gamma}$ > 2.3 MW/m² with current configuration

Maximum Temperature vs $\overline{\Gamma}$

Shield Only Zone Analysis

FEA Model

Assumes shield only region about entire radius (conservative temperature estimate)

LOCA Thermal Results for Shield Only Region

- Maximum temperature of 1427 C occurs after 24 hours.
- Natural convection to water in vacuum vessel included.
- Emissivity of 0.3 assumed for radiation in vacuum gap.
- Initial temperatures of 500 C assumed for 1st wall and WC, 450 C for cooling channels, and 100 C for vacuum vessel.

Temperature Distribution at t = 1Day

- Large gradient occurs across vacuum gap (ε =0.3 assumed).
- Temperature gradients across Shield II and gap confirmed with hand calculations.

Variation of Maximum Shield Temperature with Gap Emissivity

- Increasing emissivity across can not reduce temperatures to acceptable levels.
- 3-D analysis with transition regions are required to properly analyze region.
- Passive system may be required to achieve temperature limits.

Summary and Future Plans

- 1. Removal of the gap between the vacuum and shield reduced the maximum temperatures by 14-23 C for LOCA/LOFA cases.
- 2. $\overline{\Gamma}$ should not exceed 2.34 MW/m² to keep blanket FS temperature below 740 C during LOCA/LOFA for current configuration.
- 3. Blanket and shield model is to be updated to latest configuration and temperature limits/design sensitivity will be further evaluated.
- 4. Shield only region temperatures greatly exceed limits. Increasing emissivity does not solve problem. Passive safety system may be needed.
- 5. A full 3-D model of shield only and transition regions will be developed to further investigate this problem.