Z-Pinch Inertial Fusion Energy

Capsule compression experiments on Z
Z-Pinch Power Plant Chamber
Repetitive Driver LTD Technology

Craig L. Olson
Sandia National Laboratories
Albuquerque, NM 87185

RCM on “Elements of Power Plant Design for IFE”
IAEA headquarters
Vienna, Austria
November 4-7, 2003
Why Z-Pinch IFE?

x-rays: 1.8 MJ of x-rays on Z (demonstrated) available now

low cost: $30/J for ZR (demonstrated cost)
 $17/J goal for X-1 high yield study (1999)

high efficiency: wall plug to x-rays: ~15% on Z (demonstrated)
 can be optimized to: ~25% or more

capsule compression experiments on Z: (demonstrated)
 - double-pinchant hohlraum\(^1\): \(\text{Cr} \approx 14-20\), symmetry ~3%
 - dynamic hohlraum\(^2\): \(\sim 24 \text{ kJ x-rays absorbed, Cr} \approx 10\), DD neutrons
 - hemisphere compression for fast ignition\(^3\): \(\text{Cr} \approx 2\)

repetitive pulsed power:
 - RHEPP magnetic switching technology:
 2.5 kJ @ 120 Hz (300 kW ave. pwr. demonstrated)
 - LTD (linear transformer driver) technology:
 being developed (compact, direct, simple)
The long-range goal of Z-Pinch IFE is to produce an economically-attractive power plant using high-yield z-pinch-driven targets (∼3 GJ) at low rep-rate (∼0.1 Hz)

Z-Pinch IFE DEMO (ZP-3, the first study) used 12 chambers, each with 3 GJ at 0.1 Hz, to produce 1000 MWe
Z-Pinch IFE Matrix of Possibilities

 чувство one from each category

<table>
<thead>
<tr>
<th>Z-Pinch Driver:</th>
<th>Marx generator/ water line technology</th>
<th>magnetic switching (RHEPP technology)</th>
<th>linear transformer driver (LTD technology)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTL (Recyclable Transmission Line):</td>
<td>Flibe/electrical coating</td>
<td>immiscible material (e.g., low activation ferritic steel)</td>
<td></td>
</tr>
<tr>
<td>Target:</td>
<td>double-pincho dynamic hohlraum fast ignition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chamber:</td>
<td>dry-wall wetted-wall thick-liquid wall solid/voids (e.g., Flibe foam)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Z-Pinch Driver
Pulsed-power provides compact, efficient time compression and power amplification.

Electrical to x-ray energy
Conversion efficiency > 15%
Z-pinches offer the promise of a cost-effective energy-rich source of x-rays for IFE.

\[E_k = \sqrt{3} L_p \frac{\mu_0}{4\pi} I_0^2 \]

ZR will be within a factor of 2-3 in current (4-9 in energy) of a High Yield driver.
Z-Pinch IFE Development Path

Facilities

- HY
- Baikal (Russia, proposed)
- EMIR (Russia, proposed)
- ZR
- Z
- Saturn
- Angara-5 (Russia)
- DEMO (~90 MA)
- ETF (~60 MA)
- IRE (10 MA)
- PoP (1 MA)
- RHEPP II

X-Ray Energy per Shot

Repetition Rate (Hz)
RTL
(Recyclable Transmission Line)
Z-pinch power plant chamber uses an RTL (Recyclable Transmission Line) to provide the standoff between the driver and the target.

Yield and Rep-Rate: few GJ every 3-10 seconds per chamber (0.1 Hz - 0.3 Hz)
Thick liquid wall chamber: only one opening (at top) for driver; nominal pressure (10-20 Torr)
Flibe absorbs neutron energy, breeds tritium, shields structural wall from neutrons
Eliminates problems of final optic, pointing and tracking N beams, high speed target injection
Requires development of RTL
RTL replacement requires only modest acceleration for IFE

\[
L = 0.5 a t^2, \text{ or } a \sim \frac{1}{t^2}
\]

Acceleration is \(10^4\) less than for IFE target injection for ions or lasers.
<table>
<thead>
<tr>
<th>RTL Research in last 3 years</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RTL electrical turn-on</td>
<td>Saturn experiments (2000)
tin, Al, stainless-steel all show negligible losses</td>
</tr>
<tr>
<td>RTL low-mass and electrical conductivity</td>
<td>Saturn experiments (2001)
20(\mu) mylar; 50(\mu), 100(\mu), 250(\mu) steel
RTL mass could be as low as 2 kg
RTL mass ~ 50 kg has low resistive losses</td>
</tr>
<tr>
<td>RTL structural</td>
<td>Calculations (U. Wisconsin) (2002)
full-scale RTL (~50 kg) of 25 mill steel ok for background pressure ~ 10-20 Torr</td>
</tr>
<tr>
<td>RTL manufacturing</td>
<td>(allowed RTL budget is a few $ for 3 GJ)
Flibe casting ($0.70/RTL)
ferritic steel stamping ($1.20-3.95/RTL)</td>
</tr>
</tbody>
</table>
Targets
Z-pinch-driven-hohlraums have similar topology to laser-driven-hohlraums, but larger scale-size.
The baseline DEH capsule yields 380 MJ with an ignition margin similar to a NIF capsule.

Capsule Performance Parameters

- Peak drive temperature: 223 eV
- In-flight aspect ratio: 37
- Implosion velocity: 2.9 x 10^7 cm/s
- Convergence ratio: 36
- Total RT growth factor: 420
- Peak density: 750 g/cm^3
- Total \(\rho_r \): 3.15 g/cm^2
- Driver energy: 16 MJ
- Absorbed energy: 1.12 MJ
- Yield: 380 MJ
- Burnup fraction: 31%

J.H. Hammer, et al., Phys Plasmas 6, 2129
Summary – Double-ended hohlraum ICF status

- Simulation codes and analytic modeling have been validated by measurements of time-dependent z-pinch x-ray production, z-pinch hohlraum temperatures, and capsule hohlraum temperatures.

- A reproducible, single power feed, double z-pinch radiation source with excellent power balance has been developed for ICF capsule implosion studies.

- The Z-Beamlet Laser (ZBL) is routinely used as an x-ray backlighter at x-ray energies up to 6.75 keV.

- Capsule symmetry (P2 and P4) in double-pinch hohlraums on Z can be systematically controlled with demonstrated time-integrated symmetry of $\leq 3\%$.

- Optimum hohlraums on Z should produce time-integrated radiation symmetry of $\leq 1\%$ for 5 mm diameter capsules and absorbed energies of 25 kJ.

- P4 shimming shots are scheduled in collaboration with LLNL and LBL HIF program.
Double-Ended Hohlraum Concept
Publications

Concept

Hohlraum energetics
Cuneo, Vesey, Porter et al., Phys. Plas. 8, 2257 (2001)
Cuneo, Vesey, Hammer et al., Laser Particle Beams, 19, 481 (2001)

Foam ball radiation symmetry
Hanson, Vesey, Cuneo et al., Phys. Plas. 9, 2173 (2002)

Double pinch performance

Symmetric capsule implosions
Bennett, Vesey, Cuneo et al., Phys. Plasmas (in press)

Symmetry control

Pinch physics
Stygar, Ives, Fehl, Cuneo et al., submitted to Phys. Rev. E
Waisman, Cuneo, Stygar et al., in preparation for Phys. Plasmas
The initial dynamic hohlraum high yield integrated target design produces a 527 MJ yield at 54 MA

Capsule Performance Parameters

- Peak drive temperature: 350 eV
- In-flight aspect ratio: 48
- Implosion velocity: 3.3×10^7 cm/s
- Convergence ratio: 27
- DT KE @ ignition: 50%
- Peak density: 444 g/cm3
- Total ρr: 2.14 g/cm2
- Driver energy: 12 MJ
- Absorbed energy: 2.3 MJ
- Yield: 527 MJ
- Burnup fraction: 34%

J.S. Lash et al., *Inertial Fusion Sciences & Apps* 99, p583
Summary – Dynamic Hohlraum ICF status

• The primary radiation source is a thin radiating shock in the foam converter
• Demonstrated >200 eV x-ray drive temperatures in dynamic hohlraums on Z
• Measured $T_e \sim 1$ keV, $n_e \sim 1 \times 10^{23}$ from Ar K-shell spectra from imploded capsules
• Measured $2.6 \pm 1.3 \times 10^{10}$ thermonuclear D-D neutrons from ICF capsules absorbing >20 kJ
Dynamic Hohlraum Concept Publications

• Concept
 – Lash IFSA publication

• Energetics
 – publication on shock and temperature

• Temperature of imploded capsule core
 – publication on Ar spectra and temperature

• Neutron production
 – publication on neutron yield
Code calculations and analytic scaling predict z-pinch driver requirements for IFE DEMO

<table>
<thead>
<tr>
<th>Double-Pinch Hohlraum</th>
<th>current /x-rays E_{abs} / yield</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 x 62-68 MA</td>
</tr>
<tr>
<td></td>
<td>2 x (16-19) MJ</td>
</tr>
<tr>
<td></td>
<td>1.3 – 2.6 MJ</td>
</tr>
<tr>
<td></td>
<td>400 – 4000 MJ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dynamic Hohlraum</th>
<th>current /x-rays E_{abs} / yield</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>54 – 95 MA</td>
</tr>
<tr>
<td></td>
<td>12-37 MJ</td>
</tr>
<tr>
<td></td>
<td>2.4 – 7.2 MJ</td>
</tr>
<tr>
<td></td>
<td>530 – 4400 MJ</td>
</tr>
</tbody>
</table>

Based on these results, an IFE target for DEMO will require:

- **double-pinch hohlraum**
 - 36 MJ of x-rays (2x66MA)
 - 3000 MJ yield
 - (G = 83)

- **dynamic hohlraum**
 - 30 MJ of x-rays (86 MA)
 - 3000 MJ yield
 - (G = 100)

J. Hammer, M. Tabak, R. Vesey, S. Slutz, J. De Groot
Chambers/Power Plant
Z-Pinch IFE and Heavy Ion IFE use thick liquid walls

Z-Pinches use simple waterfalls with a pressure requirement of 10-20 Torr.

Major drivers:

<table>
<thead>
<tr>
<th>Laser (KrF, DPSSL)</th>
<th>Heavy ion (induction linac)</th>
<th>Z-pinch (pulsed power)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GeV, kA</td>
<td>MV, MA</td>
<td></td>
</tr>
</tbody>
</table>

Targets:

| Direct-drive | Indirect-drive | Fast Igniter option (major driver + PW laser) |

Chambers:

| Dry-wall | Wetted-wall | Thick-liquid wall | Solid/voids |

Thick liquid walls essentially alleviate the “first wall” problem, and can lead to a faster development path.
Z-IFE DEMO produces 1000 MWe

DEMO parameters:

- yield/pulse: 3 GJ
- driver x-rays/pulse (86 MA) 30 MJ
- energy recovery factor: 80%
- thermal recovery/pulse: 2.4 GJ
- time between pulses/chamber: 3 seconds
- thermal power/unit 0.8 GWt
- thermal conversion efficiency 45%
- electrical output/unit 0.36 GWe
- number of units 3
- total plant power output 1.0 GWe

Major cost elements:

- LTD z-pinch drivers (3) $900 M
- RTL factory $500 M
- Target factory $350 M
- Balance of Plant $900 M
- Total Cost $2.65 G

ZP-3 (the first study) used 12 chambers, each with 3 GJ at 0.1 Hz

Z-Pinch power plant studies:

Z-Pinch IFE near-term plans
Z-IFE PoP is a set of four experiments (shown here) plus IFE target studies plus IFE Power Plant studies

RTL experiments
- issues: shape, inductance, mass, electrical/structural, manufacture, cost
- power flow: limits, optimal configuration, convolute location
- chamber/interface issues: vacuum/electrical, debris removal, shielding
- RTL experiment test on Z

Repetitive driver- LTD (Linear Transformer Driver) experiment
- 1 MA, 1 MV, 100 ns, 0.1 Hz driver design/construction/testing
- LTD is very compact (pioneered in Tomsk, Russia) no oil, no water
- LTD technology is modular, scalable, easily rep-ratable
- 1 MA, 100 kV cell is being developed this year (SNL/Tomsk)

Shock mitigation scaled experiments
- 3 GJ yield is larger than conventional IFE yields of 0.4-0.7 GJ
- coolant streams, or solids/voids, may be placed as close to target as desired
- shock experiments with explosives and water hydraulic flows
- validate code capabilities for modeling full driver scale yields

Full RTL cycle @ 0.1 Hz experiment
- integrated experiment (LTD, RTLs, z-pinch loads, 0.1 Hz)
- demonstrate RTL/z-pinch insertion, vacuum/electrical connections, firing of z-pinch,
 - removal of remnant, repeat of cycle
- z-pinches have 5 kJ x-ray output per shot

Cost: $14M/year for 3-5 years, $5M for FY04 to start