Overview of ARIES ACT-1 Study

Farrokh Najmabadi
Professor of Electrical & Computer Engineering
Director, Center for Energy Research
UC San Diego

and the ARIES Team

Japan-US Workshop on Fusion Power Plants and Related Advanced Technologies with participations from China & Korea
February 26-28, 2013
ARIES Program Participants

Systems code: UC San Diego, PPPL

Plasma Physics: PPPL, GA, LLNL

Fusion Core Design & Analysis: UC San Diego, FNT Consulting

Nuclear Analysis: UW-Madison

Plasma Facing Components (Design & Analysis): UC San Diego, UW-Madison

Plasma Facing Components (experiments): Georgia Tech

Design Integration: UC San Diego, Boeing

Safety: INEL

Contact to Material Community: ORNL
Goals of ARIES ACT Study

 - Substantial progress in understanding in many areas.
 - New issues have emerged: e.g., edge plasma physics, PMI, PFCs, and off-normal events.
 - What would be the maximum fluxes that can be handled by in-vessel components in a power plant?
 - What level of off-normal events are acceptable in a commercial power plant?

- Evolving needs in the ITER and FNSF/Demo era:
 - Risk/benefit analysis among extrapolation and attractiveness.
 - Detailed component designs is necessary to understand R&D requirements.
Frame the “parameter space for attractive power plants” by considering the “four corners” of parameter space.

Frame 1 (ACT-1):
- **Reversed-shear** $(\beta_n=0.04-0.06)$ DCLL blanket
- Reversed-shear $(\beta_n=0.04-0.06)$ SiC blanket

Frame 2 (ACT-2):
- **1st Stability** (no-wall limit) DCLL blanket
- **1st Stability** (no-wall limit) SiC blanket

Physics Extrapolation:
- Higher power density
- Higher density
- Lower current-drive power

Engineering Performance (efficiency):
- Lower thermal efficiency
- Higher fusion/plasma power
- Higher P/R
- Metallic first wall/blanket

- Higher thermal efficiency
- Lower fusion/plasma power
- Lower P/R
- Composite first wall/blanket

Key Models:
- ARIES-RS/AT
- SSTR-2
- EU Model-D
- ARIES-1
- SSTR
Status of the ARIES ACT Study

➤ Project Goals:
- Detailed design of advanced physics, SiC blanket ACT-1 (ARIES-AT update).
- Detailed design of ACT-2 (conservative physics, DCLL blanket).
- System-level definitions for ACT-3 & ACT-4.

➤ ACT-1 research is completed.
- First design iteration was completed for a 5.5 m Device.
- Updated design point at R = 6.25 m (detailed design on-going)
- Final report to be published as a special issue of Fusion Science & Technology

➤ ACT-2 Research will be completed by December 2013.
ARIES-ACT1 (ARIENS-AT update)

- Advance tokamak mode
- Blanket: SiC structure & LiPb Coolant/breeder (to achieve a high efficiency)
ARIES Systems Code – a new approach to finding operating points

- Systems codes find a single operating point through a minimization of a figure of merit with certain constraints
 - Very difficult to see sensitivity to assumptions.
- Our new approach to systems analysis is based on surveying the design space and finding a large number of viable operating points.
- A GUI is developed to visualize the data. It can impose additional constraints to explore sensitivities.

Example: Data base of operating points with $f_{bs} \leq 0.90$, $0.85 \leq f_{GW} \leq 1.0$, $H_{98} \leq 1.75$
Impact of the Divertor Heat load

- Divertor design can handle > 10 MW/m² peak load.
- UEDGE simulations (LLNL) showed detached divertor solution to reach high radiated powers in the divertor slot and a low peak heat flux on the divertor (~5MW/m² peak).
 - Leads to ARIES-AT-size device at R=5.5m.
 - Control & sustaining a detached divertor?
- Using Fundamenski SOL estimates and 90% radiation in SOL+divertor leads to a 6.25-m device with only 4 mills cost penalty (current reference point).
 - Device size is set by the divertor heat flux.
The new systems approach underlines robustness of the design point to physics achievements.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major radius (m)</td>
<td>6.25</td>
</tr>
<tr>
<td>Aspect ratio</td>
<td>4</td>
</tr>
<tr>
<td>Toroidal field on axis (T)</td>
<td>6</td>
</tr>
<tr>
<td>Peak field on the coil (T)</td>
<td>11.8</td>
</tr>
<tr>
<td>Normalized beta*</td>
<td>5.75%</td>
</tr>
<tr>
<td>Plasma current (MA)</td>
<td>10.9</td>
</tr>
<tr>
<td>H98</td>
<td>1.65</td>
</tr>
<tr>
<td>Fusion power (MW)</td>
<td>1813</td>
</tr>
<tr>
<td>Auxiliary power</td>
<td>160</td>
</tr>
<tr>
<td>Average n wall load (MW/m²)</td>
<td>2.5</td>
</tr>
<tr>
<td>Peak divertor heat flux (MW/m²)</td>
<td>13.5</td>
</tr>
<tr>
<td>Cost of Electricity (mills/kWh)</td>
<td>67</td>
</tr>
</tbody>
</table>

* Includes fast α contribution of $\sim 1\%$
The new systems approach underlines robustness of the design point to physics achievements.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Major radius (m)</td>
<td>6.25</td>
<td>6.25</td>
</tr>
<tr>
<td>Aspect ratio</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Toroidal field on axis (T)</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Peak field on the coil (T)</td>
<td>11.8</td>
<td>12.9</td>
</tr>
<tr>
<td>Normalized beta</td>
<td>5.75%</td>
<td>4.75%</td>
</tr>
<tr>
<td>Plasma current (MA)</td>
<td>10.9</td>
<td>10.9</td>
</tr>
<tr>
<td>H98</td>
<td>1.65</td>
<td>1.58</td>
</tr>
<tr>
<td>Fusion power (MW)</td>
<td>1813</td>
<td>1817</td>
</tr>
<tr>
<td>Auxiliary power</td>
<td>160</td>
<td>169</td>
</tr>
<tr>
<td>Average n wall load (MW/m²)</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>Peak divertor heat flux (MW/m²)</td>
<td>13.5</td>
<td>13.5</td>
</tr>
<tr>
<td>Cost of Electricity (mills/kWh)</td>
<td>67</td>
<td>69</td>
</tr>
</tbody>
</table>

* Includes fast α contribution of ~ 1%
Detailed Physics analysis has been performed using the latest tools.

New physics modeling

- Energy transport assessment: what is required and model predictions
- Pedestal treatment
- Time-dependent free boundary simulations of formation and operating point
- Edge plasma simulation (consistent divertor/edge, detachment, etc)
- Divertor/FW heat loading from experimental tokamaks for transient and off-normal*
- Disruption simulations*
- Fast particle MHD

* Discussed in the paper by M. Tillack, C. Kessel
Overview of engineering design: 1. High-hest flux components*

- Design of first wall and divertor options
 - High-performance He-cooled W-alloy divertor, external transition to steel
 - Robust FW concept (embedded W pins)

- Analysis of first wall and divertor options
 - Birth-to-death modeling
 - Yield, creep, fracture mechanics
 - Failure modes

- Helium heat transfer experiments
- ELM and disruption loading responses
 - Thermal, mechanical, EM & ferromagnetic

* Discussed in paper by M. Tillack and J. Blanchard,
Overview of engineering design*: 2. Fusion Core

- Features similar to ARIES-AT
 - PbLi self-cooled SiC/SiC breeding blanket with simple double-pipe construction
 - Brayton cycle with $\eta \approx 58\%$

- Many new features and improvements
 - He-cooled ferritic steel structural ring/shield
 - Detailed flow paths and manifolding for PbLi to reduce 3D MHD effects*
 - Elimination of water from the vacuum vessel, separation of vessel and shield
 - Identification of new material for the vacuum vessel

* Discussed in the paper by M. Tillack, this session
Detailed safety analysis has highlighted impact of tritium absorption and transport

- Detailed safety modeling of ARIES-AT (Petti et al) and ARIES-CS (Merrill et al, FS&T, 54, 2008) have shown a paradigm shift in safety issues:
 - Use of low-activation material and care design has limited temperature excursions and mobilization of radioactivity during accidents. Rather off-site dose is dominated by tritium.
 - For ARIES-CS worst-case accident, tritium release dose is 8.5 mSv (no-evacuation limit is 10 mSV)

- Major implications for material and component R&D:
 - Need to minimize tritium inventory (control of breeding, absorption and inventory in different material)
 - Design implications: material choices, in-vessel components, vacuum vessel, etc.
AREIS-AT had a thick vacuum vessel (40 cm thick) with WC and water to help in shielding. (adoption of ITER vacuum vessel).

- Expensive and massive vacuum vessel.
- ITER Components are “hung” from the vacuum vessel. ARIES sectors are self supporting (different loads).

ARIES-AT vacuum vessel operated at 50°C

- material?
- Tritium absorption?
- Tritium transfer to water?

Vacuum vessel temperature exceeded 100°C during an accident after a few hours (steam!)
New Vacuum Vessel Design

- Contains no water
 - Can run at high temperature: 300-500°C. (350 °C operating temperature to minimize tritium inventory)
- Cooled by He flowing between ribs.
 - Tritium diffused through the inner wall is recovered from He coolant (Tritium diffusion to the cryostat and/or building should be much smaller.
- Made of low-activation 3Cr-3WV baintic steel (no need for post-weld heat treatment).
In summary …

- ARIES-ACT study is re-examining the tokamak power plant space to understand risk and trade-offs of higher physics and engineering performance with special emphasis on PMI/PFC and off-normal events.
 - ARIES-ACT1 (updated ARIES-AT) is near completion.
 - Detailed physics analysis with modern computational tools are used. Many new physics issues are included.
 - The new system approach indicate a robust design window for this class of power plants.
 - Many engineering improvements: He-cooled ferritic steel structural ring/shield, Detailed flow paths and manifolding to reduce 3D MHD effects, Identification of new material for the vacuum vessel …
 - In-elastic analysis of component including Birth-to-death modeling and fracture mechanics indicate a higher performance PFCs are possible. Many issues/properties for material development & optimization are identified.
Thank you!