An Overview of the Fluid Dynamics Aspects of Liquid Protection Schemes for Fusion Reactors

S. I. Abdel-Khalik and M. Yoda

TOFE-16 Meeting - Madison (September 2004)

G. W. Woodruff School of Mechanical Engineering Atlanta, GA 30332–0405 USA

OUTLINE

- Thick Liquid Protection (HYLIFE-II)
- Thin Liquid Protection (Prometheus)
 - Wetted Wall Concept
 - Forced Liquid Film Concept
- Liquid-Surface-Protected PFCs

Thick Liquid Protection

HYLIFE-II: Use slab jets or liquid sheets to shield IFE chamber first walls from neutrons, X-rays and charged particles.

- Oscillating sheets create protective pocket to shield chamber side walls
- Lattice of stationary sheets (or cylindrical jets) shield front/back walls while allowing beam propagation and target injection

Thick Liquid Protection

Problems Addressed:

- Is it possible to create "smooth" prototypical turbulent liquid sheets to allow beam propagation through the lattice?
 - □ Small (~5 mm) clearance between driver beam & sheet free surface in protective lattice \Rightarrow > 30 year lifetime for final focus magnets
- How much "fog" is created in the chamber?
 - ☐ Primary turbulent breakup the "hydrodynamic source term"
 - ☐ Limits dictated by beam propagation and target delivery requirements

Surface Smoothness

- Used Planar Laser Induced Fluorescence (PLIF) to characterize the jet free surface at near prototypical conditions
- Examine effects of nozzle design, flow conditioning, and boundary layer cutting on surface ripple
- Measure standard deviation of free surface z-location (σ_z)
 - Characteristic length scale $\delta = 1$ cm
 - $Re = U_0 \delta/v \le 130,000$
 - $We = \rho_L U_o^2 \delta / \sigma \le 19,000$
 - Near field $x / \delta \le 25$
 - Boundary layer cutter removal rate $\dot{m}_{cut} / \dot{m}_{flow} = 0.0 1.9\%$

Flow Conditioning and Boundary Layer Cutting

Surface Smoothness (PLIF Results)

Standard Design ■ - No cutting No Fine Screen □ - 1.9% cut

- Surface ripple increases by ~50% when fine screen removed
- BL cutting reduces σ_z by ~33% for standard flow conditioner design
- $\sigma_z \downarrow$ as $\dot{m}_{cut}\uparrow$; Cutting as little as 0.6% significantly improves surface smoothness
 - Proper flow conditioning and boundary layer cutting can reduce surface ripple well below the maximum value specified for HYLIFE-II (0.07 δ)

The "Hydrodynamic Source Term"

- Used simple mass collection system to measure mass flux of liquid droplets ejected from the free surface at different locations – estimated corresponding chamber number density
 - Quantified effects of flow conditioning and boundary layer cutting—compared data vs. empirical primary turbulent breakup model w/o FC & BLC

Hydrodynamic Source Term - Equivalent Number Density $(x / \delta = 25)$

- Droplet mass flux values for jets produced by nozzles with optimized flow conditioners is ~3-4 orders of magnitude lower than predictions of empirical correlation
 - Droplets ejected form sparse aerosol around jet
- Removing fine screen increases range and number density of droplets
- Boundary Layer cutting with modest mass removal rates effectively eliminates turbulent breakup for a well-conditioned jet.

Standard Design No Fine Screen

$$\dot{m}_{cut} / \dot{m}_{flow}$$
= 0.0% \diamond 1.0% \wedge 1.9%

Thin Liquid Protection

Thin Liquid Protection

Problems Addressed (wetted wall/Forced Film):

- How frequently will the film "drip"? How large are the drops?
 - Constraints on the repetition rate to prevent interference with beam propagation and/or target injection
- Can a minimum film thickness be maintained to provide adequate protection over subsequent target explosions?
 - Constraints on minimum injection velocity
- How far will the film remain attached to the wall?
 - Constraints on "tile" size, i.e. spacing between injection and removal ports
- How much "fog" will be formed around the forced liquid film?
- How will the film behave around beam ports/penetrations?
 - Recommendations on beam port geometry/design.

Study both wetted wall & forced film concepts over "worst case" of downward-facing surfaces

Experimental & Numerical Study of Porous Wetted Walls

Quantify effects of

injection velocity w_{in} , initial film thickness z_0 , initial perturbation geometry & mode number, inclination angle θ , and Evaporation & Condensation at the interface

on

Droplet detachment time, Droplet size, and minimum film thickness prior to detachment

 $0.53 \, \mathrm{sec}$

Obtained generalized charts for dependent variables as functions of the governing nondimensional parameters

 $0.59 \, \mathrm{sec}$

Typical Non-Dimensional Charts

Porous Wetted Walls

- Nondimensional Initial Thickness $z_0^*=0.1$
- Nondimensional Injection Velocity $w_{in}^*=0.01$

Nondimensional mass flux
$$\dot{m}_{\rm f}^* = \dot{m}_{\rm f}/(\rho_{\rm L}U_{\rm o})$$
 $= -0.005$ $= -0.002$ $= 0.01$ $= -0.002$ $= 0.02$ $= 0.02$

Wetted Wall Summary

- Developed generalized non-dimensional charts applicable to a wide variety of candidate coolants and operating conditions
- Stability of liquid film imposes
 - Lower bound on repetition rate (or upper bound on time between shots) to avoid liquid dripping into reactor cavity between shots
 - Lower bound on liquid injection velocity to maintain minimum film thickness over entire reactor cavity required to provide adequate protection over subsequent fusion events
- Model Predictions are closely matched by Experimental Data

Experimental Study of Forced Liquid Films

Quantify Effects of

• Film thickness, injection velocity, surface inclination, surface curvature, injection angle, and surface material wettability

On

 Detachment distance, film width and thickness, and ejected droplet mass flux

Detachment Distance Vs. Weber Number

- Similar data for other angles, film thickness, and surface curvature
- Design Windows for stream-wise spacing of injection/removal slots to maintain attached film
- Wetting wall surface requires fewer injection slots (more desirable)

Penetrations and Beam Ports

- Cylindrical and hydrodynamically-tailored obstructions modeling protective dams around penetrations and beam ports result in film "breakup."
- Penetrations will pose significant design challenge for forced film wall protection systems.

Liquid-Film-Protected Divertors

Problem Definition:

- ALPS and APEX Programs established temperature limits for different liquids to limit plasma contamination by evaporation
- This work establishes limits for the maximum spatial temperature gradients (i.e. heat flux gradients)
 - ☐ Spatial Variations in the wall and Liquid Surface Temperatures are expected due to variations in the wall loading
 - ☐ Thermocapillary forces created by such temperature gradients can lead to film rupture and dry spot formation in regions of elevated local temperatures
 - ☐ Initial Attention focused on Plasma Facing Components protected by a "non-flowing" thin liquid film (e.g. porous wetted wall)

Numerical Simulation - Film Rupture

- Asymptotic solution for low aspect ratio with variable surface temperature or heat flux
- Film surface evolution also determined by Level Contour Reconstruction Method
- Generalized Charts for maximum allowable surface temperature (or heat flux) gradients

Maximum Heat Flux Gradients

Typical Results for $h_o=1$ mm & a(Nu)=1.0

Coolant	Mean Temperature [K]	Maximum Allowable Heat Flux Gradient : $(Q''/L)_{max}$ [(MW/m²)/cm]				
		a = 0.05	a = 0.02	a = 0.01	a = 0.005	a = 0.002
Lithium	573	1.9×10 ⁰	6.3×10 ⁻¹	3.1×10 ⁻¹	1.5×10 ⁻¹	6.1×10 ⁻²
Lithium- Lead	673	1.2×10¹	4.9×10 ⁰	2.4×10 ⁰	1.2×10 ⁰	4.9×10 ⁻¹
Flibe	673	1.7×10 ⁻¹	6.5×10 ⁻²	3.2×10 ⁻²	1.6×10 ⁻²	6.4×10 ⁻³
Tin	1273	1.7×10¹	6.8×10 ⁰	3.4×10 ⁰	1.7×10 ⁰	6.8×10 ⁻¹
Ga	1073	5.0×10¹	1.9×10 ¹	9.7×10 ⁰	4.8×10 ⁰	1.9×10 ⁰

CONCLUSIONS

Experimental & Numerical Studies:

- Provide fundamental understanding of "building block" type flows in liquid-protected systems
- Develop experimentally-validated numerical tools (codes/models) to analyze behavior of such flows
- Produce generalized charts and design guidelines to identify windows for successful operation of liquid wall protection systems

Acknowledgements

DOE, ARIES, and Georgia Tech

- Research Faculty : D. Sadowski and S. Shin
- Students: F. Abdelall, J. Anderson, J. Collins, S. Durbin, L. Elwell, T. Koehler, J. Reperant and B. Shellabarger, V. Novak, C. Dillon, D. Lascar

Additional Information -- See TOFE-16 Presentations:

- 1. P-11-33: S. Shin, et al., Design Constraints for Liquid-Protected Divertors
- 2. P-11-41: S. Durbin, et al., Flow Conditioning Design in Thick Liquid Protection
- 3. P-11-40: S. Durbin, et al., Impact of Boundary Layer Cutting on Free Surface Behavior in Turbulent Liquid Sheets
- 4. P-11-43: V. Novak, et al., Experimental and Numerical Investigation of Mist Cooling for the Electra Hibachi