Effects of Thermal Conductivity Ratio in Helium-Cooled Divertors

B. H. Mills
J. D. Rader
D. L. Sadowski
S. I. Abdel-Khalik
M. Yoda
Objectives and Background

Objectives

- Experimentally verify dynamic similarity of experiments of a finger-type divertor module performed with different coolants and different test section materials
 - Match nondimensional coolant flow rate and solid-to-coolant thermal conductivity ratio
- Verify previous predictions of thermal performance at prototypical conditions and general parametric design curves

Background

- Part of the ARIES study and GT effort on evaluating the thermal-hydraulics and improving the thermal performance of various helium-cooled divertor designs

Brantley Mills - bmills@gatech.edu
Original Experimental Approach

- Fabricate and instrument test sections that closely simulate geometry of proposed divertor module
 - Heat test sections with oxyacetylene torch or electrical heaters
- Perform dynamically similar experiments spanning prototypical operating conditions with air instead of helium (He)
 - Match nondimensional coolant flow rate \leftrightarrow Reynolds number Re
 - Prandtl and Mach number effects negligible
- Calculate nondimensional heat transfer coefficient Nu and loss coefficient K_L from experimental data
 - Measure surface temperature, pressure drop
- Extrapolate results to prototypical conditions: Tungsten-alloy module cooled by high-temperature He
GT Test Module

- Single jet-impingement design
 - Dimensions similar to HEMP
 - Constructed of C36000 brass alloy
 - Heated by oxy-acetylene torch at heat fluxes $q'' < 2.0 \text{ MW/m}^2$
- Operating conditions determined from energy balance on HEMP design at 10 MW/m² ⇒
 - $Re = 7.6 \times 10^4$ at central port
 - Experiments: $1 \times 10^4 < Re < 1.4 \times 10^5$
 - Coolants: air, Ar, and He
- Embedded thermocouples (TC) measure temperature near cooled surface
Calculating \bar{Nu} and Re

- Determine Reynolds number from mass flow rate \dot{m}

$$Re = \frac{4\dot{m}}{\pi \mu D_o}$$

- Calculate average HTC

$$\bar{h} = \frac{\bar{q}''}{(\bar{T}_c - T_{in}) \frac{A_H}{A_c}}$$

- Average heat flux \bar{q}'' determined from energy balance for coolant
- Avg. cooled surface temperature \bar{T}_c extrapolated from embedded TC

- Determine nondimensional HTC, or average Nusselt number

$$\bar{Nu} = \frac{\bar{h}D_o}{k}$$

- Determine a correlation for \bar{Nu} from these experimental data

Brantley Mills - bmills@gatech.edu
Experiments performed with He and argon (Ar) to verify similarity. For He, the Nusselt number (Nu) is lower than those for air and Ar.

But He has higher thermal conductivity (k).

Matching Re is not sufficient for similarity.

Multi-Coolant Experiments

[Mills et al. (2012)]

Brantley Mills - bmills@gatech.edu
Thermal Conductivity Ratio

- Numerical simulations (courtesy J. Rader) show that fraction of the incident heat flux removed by convection at cooled surface varies between different coolants.

<table>
<thead>
<tr>
<th>Coolant</th>
<th>Re</th>
<th>\bar{T}_c (Expts.)</th>
<th>\bar{T}_c (Simulations)</th>
<th>Removed heat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>4.94×10^4</td>
<td>291 °C</td>
<td>293 °C</td>
<td>37.7 %</td>
</tr>
<tr>
<td>Helium</td>
<td>5.09×10^4</td>
<td>121 °C</td>
<td>121 °C</td>
<td>55.9 %</td>
</tr>
</tbody>
</table>

- Dimensional analysis: fraction of heat removed by convection (vs. conduction through divertor wall) characterized by solid-to-coolant thermal conductivity ratio k_s / k

- Assume power-law correlation for \overline{Nu}

$$\overline{Nu} = A Re^B (k_s / k)^C$$

(still neglecting Pr, Ma effects)
Based on experimental results for He, air and Ar, Nu well-described by power-law correlation for Re and k_s/k

$$Nu = 0.0348 Re^{0.753} \left(\frac{k_s}{k} \right)^{0.118}$$

- $10^4 < Re < 1.4 \times 10^5$
- $Pr \approx 0.7$
- $900 < k_s/k < 7000$, but only one value of k_s considered
Thermal Conductivity Ratio

- \bar{Nu} correlation experimentally validated for $900 < k_s/k < 7000$, all at one value of k_s

<table>
<thead>
<tr>
<th>Test Section Material</th>
<th>k_s [W/(m-K)]</th>
<th>Coolant</th>
<th>k [W/(m-K)]</th>
<th>k_s/k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brass</td>
<td>148 (at 300 °C)</td>
<td>Air</td>
<td>0.028 (at 50 °C)</td>
<td>5290</td>
</tr>
<tr>
<td>Brass</td>
<td>148 (at 300 °C)</td>
<td>He</td>
<td>0.16 (at 35 °C)</td>
<td>925</td>
</tr>
<tr>
<td>W-1%La$_2$O$_3$</td>
<td>116 (at 1000 °C)</td>
<td>He</td>
<td>0.34 (at 650 °C)</td>
<td>~340</td>
</tr>
<tr>
<td>Carbon steel</td>
<td>55 (at 200 °C)</td>
<td>He</td>
<td>0.16 (at 35 °C)</td>
<td>~340</td>
</tr>
</tbody>
</table>

- Prototypical conditions (W-1%La$_2$O$_3$ cooled by He), $k_s/k \approx 340$
- Test section of AISI 1010 carbon steel cooled by He at near-ambient temperatures will also give $k_s/k \approx 340$
 - Twenty additional experiments performed with air, He, and Ar
Experimental data from steel test section in excellent agreement with those for brass test section.

Nu correlation now experimentally confirmed for

- $10^4 < Re < 1.2 \times 10^5$
- $Pr \approx 0.7$
- $350 < k_s/k < 7000$
Loss Coefficient

\[K_L = (8.495 \times 10^4) Re^{-1.337} + 1.056 \]

- Loss coefficient
 \[K_L = \frac{\Delta p}{\rho \bar{V}^2 / 2} \]
 - \(\Delta p \) coolant density
 - \(\bar{V} \) average speed at central port
- As expected, results for steel and brass test sections in excellent agreement since \(K_L \) hydraulic parameter

Open Symbols [Mills et al. (2012)]
Maximum Heat Flux Charts

- Experimentally validated for prototypical conditions
 - He/W-1%La$_2$O$_3$
 - $T_i = 600 \, ^\circ C$
 - $T_s = 1100 \, ^\circ C, 1200 \, ^\circ C, 1300 \, ^\circ C$
 - $\beta = 5\%, 10\%, 15\%, 20\%$

- At $Re = 7.6 \times 10^4$, $T_s = 1200 \, ^\circ C$
 - $q''_{\text{max}} = 17.3 \, \text{MW/m}^2$
 - On tile: $q''_T = 12.4 \, \text{MW/m}^2$ for $A_T = 1.4 \, A_h$

[Mills et al. (2012)]
Summary

■ Experimentally verified correlation for $\bar{Nu}(Re, k_s/k)$ at prototypical values of Re and k_s/k
 □ Steel test section cooled by He at near-ambient temperatures gives $k_s/k \approx 350$: value for W-1%La$_2$O$_3$ divertor cooled by He at 600 °C
 □ Experiments for steel test section cooled by air and Ar also in good agreement with previous results for brass test section

■ Extrapolating these correlations to prototypical conditions gives:
 □ At $Re = 7.6 \times 10^4$ and $T_s = 1200$ °C: $q''_{\text{max}} = 17.3$ MW/m2
 □ Including a tile with $A_T = 1.4 A_h$: $q'_T = 12.4$ MW/m2