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ABSTRACT

Integral Transport methods were used to calculate the
x-ray intensity in a NOVA hohlraum. Two cases were
examined: the nominal case in which all five lasers strike
either side of the hohlraum and the abnormal case for
which five lasers strike the right side but only four strike
the left. As expected, the uniform case produces a fairly
uniform illumination over the capsule, whereas the
abnormal case is highly non-uniform.

I. INTRODUCTION

From the initial illumination of the target capsule to
its subsequent burn and disassembly, radiation transport
plays an important role throughout the compression,
ignition and burn phases of Inertial Fusion Energy (IFE)
capsules1. Time-dependent diffusion based methods have
frequently been used to simulate radiation transport within
these target capsules2,3,4. It is well known that these
methods have difficulty describing the radiation field in
optically thin media because of the infinite propagation
speed of the radiation in the diffusion approximation.1

Various methods have been devised to remedy these
problems; foremost, flux-limited diffusion methods that
seek to limit the propagation speed of the radiation5,6.
Though improvements have been made, the optically thin
regime still poses some problems for diffusion-based
methods.

Recently, the time-dependent Integral Transport (IT)
method has been shown to achieve highly accurate results
for neutral particle transport in optically thick and thin
regions with finite propagation speeds.7,8,9,10 Central to the
IT method are the time-dependent single-collision kernels.
These kernels contain Heaviside or delta functions that
provide causality information for the neutral particle�s
transport. A neutral particle at a position r� at a time t�
traveling with a speed v cannot affect the intensity at a
position r at a time t until enough time has passed for its
translation. This is expressed by the condition (t - t�) = |r

� r�| / v. The time-dependent IT method can readily be
adapted to x-ray transport.

The transport equation for x-rays in a given
frequency group in a heterogeneous medium with an
arbitrary isotropic source is:

An integral equation for the mean intensity is
obtained by transforming Eqn. 1 using either the method
of characteristics or Laplace transform techniques:7

where: K�(r,r;t,t�) is the time-dependent kernel and
Q�(r�,t�) is the time-dependent source:

The integration is carried out over the volume of
interest, V�, from t�=0 until some later time t. Extremely
accurate solutions can be obtained provided that a
sufficiently accurate quadrature set is used.

The functional form of the homogeneous kernels in
the three commonly used geometries has already been
derived.7 The kernels for the two geometries that will be
discussed in this paper are:
One-Dimensional Cartesian;

Three-Dimensional Cartesian;
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The present purpose of this work is to use integral
transport methods to simulate x-ray transport within a
NOVA hohlraum. To ensure accurate results the IT
method was benchmarked against a quasi-analytical
method and compared to time-dependent diffusion in an
optically thick medium.

II. NUMERICAL METHOD

The Heaviside or delta function, within each of the
time-dependent kernels, provides causality information for
the emitted photons. A finite amount of time must pass
before the radiation can affect the mean intensity at a
location other than where it was born or scattered. Figure
1 depicts how this causality information is practically used
in one-dimensional Cartesian coordinates. Points (x�,t�),
shown as shaded squares, are within the cone of
communication which extends backwards in time from the
point of interest (x,t) and as such are included in the
numerical evaluation of the integrals. Points outside the
cone have not had enough time to affect the intensity and
therefore are excluded.

The IT method is easily applied to problems in either
finite or infinite geometries. In an infinite medium, the
integration in the spatial domain extends over the region
defined between the left and right moving wave fronts.
However, for finite geometries, like that presented in
Figure 1, the boundaries of the geometry are placed as the
limits of integration.

Figure 1. Numerical procedure for 1D-slab.

III. BENCHMARKS

The integral transport method is compared to
benchmark results generated by Ganapol.11 In his paper,

Ganapol presents an idealized problem of a unit delta
function source in time and space positioned at the center
of an infinite medium. Photons released from the source
have a velocity of 1 [cm/s]. Therefore, a position �x� cm
from the source will only have an intensity if �x� seconds
have passed for photons to travel from the source to that
position. The medium is purely scattering with a
macroscopic interaction cross section of 1.0 [1/cm]. The
material properties are found in Table 1.

Table 1. Material Properties for Benchmarking
Properties Value

Particle Velocity 1.0 [cm/s]
Scattering Cross Section 1.0 [1/cm]
Total Cross Section 1.0 [1/cm]
Source Strength 1.0 [#/cm^3*s]

The source function for the benchmark problem
presented in Ref. [11] is:

Table 2 displays the comparison of the numerical
results computed using the IT method with spatial steps of
0.01 cm. The significant figures for which the two results
differ are underlined.

Table 2. Comparison with Analytical Benchmark
x

t 1.00 2.00 3.00 4.00
1.00 1.8384E-1 - - -
3.00 2.3942E-1 9.3835E-2 8.2978E-3 -
5.00 1.9957E-1 1.2105E-1 4.9595E-2 1.1823E-2
7.00 1.7347E-1 1.2293E-1 6.8028E-2 2.8447E-2
9.00 1.5528E-1 1.1935E-1 7.6384E-2 4.0186E-2

As evident from the table, the IT results are in
excellent agreement to the benchmark values presented by
Ganapol. For every case except one, the IT method and
the analytical method agree to 5 significant figures. For
information on the numerical method used in the IT
method refer to Ref. [10].

IV. TRANSPORT VS. DIFFUSION

The IT and time-dependent diffusion methods are
compared for transport in a homogeneous one-
dimensional Cartesian medium. For all cases the material
is a slab with a width of 20 mean free lengths and has the
material properties found in Table 1.

X�

t-�t

t-2�t

t-3�t

Points that are in the communication cone and
contribute to flux at (x,t)
Points that are not in the communication cone
and do not contribute to the flux at (x,t)

(x,t)
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The first case examined is a one-dimensional slab
with a uniform source distributed throughout its interior.
Both methods were run for 50 mean free times. Results
are shown in Figure 2 for every 10 mean free times.

As shown in Figure 2, the time-dependent diffusion
and integral transport calculations are in excellent
agreement in the center of the slab. However, at the last
time step presented, there is a 25% error between the
diffusion-based calculations and the IT method at the
vacuum boundaries. Again this is expected, as diffusion
theory is in best agreement with transport in a diffusive
medium with points several mean free paths away from
boundaries.

In the second case, the comparison is for an isotropic,
uniformly distributed source localized in the central 10
mean free lengths of the slab. The source strength for this
localized source is 1 particle per cm3s. As before, the
time-dependent calculations were run for 50 mean free
times. As shown in Figure 3, the agreement between the
diffusion and IT methods is poor. After 10 mean free
times, the diffusion-based solution differs by a maximum
of 1% over the interior of the source region. As time
progresses the agreement between the two calculational
methods increases. After 50 mean free times, the
diffusion results are 8% lower than those predicted by the
IT method. As time advances, the difference between the
two methods continues to increase. If the material was
not as thick or if the source distribution was even more
localized, there would be an even greater discrepancy
between the diffusion based and IT methods for interior
points.

V. HOHLRAUM RESULTS

X-ray transport within a NOVA hohlraum (Figure 4)
will be calculated. Several assumptions are made which
will simplify Eqn. 3 into a more readily calculated form.
These assumptions are:

1. The capsule is assumed to be totally black. Any x-
rays incident on the capsule will be absorbed and not re-
emitted.
2. The hohlraum�s albedo is independent of position,
time and incident intensity. Therefore, the albedo is set to
a constant 0.8 throughout the simulation. X-rays are
emitted isotropically from the surface of the hohlraum.
3. The geometry of the hohlraum and capsule remains
fixed throughout the simulation. No provisions are made
for the deformation of the capsule and hohlraum.
4. The filler gas within the hohlraum does not have any
opacity. Therefore, x-rays traveling within the hohlraum
will not scatter or be absorbed. Thus, only the x-ray mean
intensity incident on the surfaces of the capsule and the
hohlraum will be calculated.

Figure 4. NOVA calculational model.
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Figure 2. IT-Diffusion comparison for uniform source.
The curves are every 10 mean free times, starting with t=10.
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Figure 3. IT-Diffusion comparison for localized source.
The curves are every 10 mean free times, starting with t=10.
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With these assumptions the time-dependent integral
transport equation is:

The integration is carried out over the surface of the
hohlraum, S, because that is the only location that
possesses any x-ray sources.

Although the simplifying assumptions have reduced
the previous full-fledged integral equation into an
ordinary integral, solving Eqn. 7 numerically still poses
some difficulties. A view-factor calculation must be
performed because the capsule in the center of the
hohlraum can block the line of sight between two surface
points on the hohlraum. Any x-ray that intersects the
capsule in the center of the hohlraum is absorbed, as the
capsule is assumed to be completely black.

The spatial distribution of the x-ray sources and their
respective intensity profiles are modeled after the NOVA
experiment. Figure 4 shows the modeled source input
used in the numerical modeling of the NOVA hohlraum
and capsule. For each case the calculation was allowed to
run for 25 picoseconds, at which time the capsule
illumination was plotted.

Two different scenarios were investigated. The first
case simulated the nominal illumination of the NOVA
capsule. The capsule (Figure 5) is symmetrically
illuminated by five x-ray sources on either side of the
hohlraum, where the azimuthal angle for the hohlraum is

defined in Figure 4. Figure 6 is a two dimensional
representation of the capsule illumination. The two
angular ordinates are defined in spherical coordinates
from the center of the capsule. As shown in the Figure 6,
IT predicts that the capsule illumination varies by no more
than 20% for any given point. As expected, the hottest
portion of the capsule is the area that faces all five
sources. The coolest portion of the capsule is the region
on either side, which only has a partial line of sight to any
given source. These regions are evident from the five
cool regions, which are in a ring just outside the central
hot spot.

The second case simulated a non-uniform
illumination of the NOVA capsule. As shown on the left
side of Figure 7, the right side of the capsule is
illuminated by five sources whereas the left is illuminated
only by four.

As shown in Figure 8, the region of the capsule that
has the most direct line of sight to the source that is turned
off, is the coolest. The asymmetry in the illumination
affects not only the portions of the capsule nearest to it,
but the illumination over the entire capsule. The capsule
illumination for this asymmetrical case varies
approximately by a factor of two

VI. SUMMARY AND CONCLUSION

It was shown that the Integral Transport method
produces very accurate results and can model three-
dimensional radiation transport in IFE hohlraums.

( ) ( )
( )

(7).
4

,
,

2

0

dS
v

rr
tt

rrttc

trS
tdtrJ
S

t

�
�

�

�

�
�

�

� ��
���

����

��
�= �� �

��

Figure 5. Uniform hohlraum illumination. Figure 6. Uniform capsule illumination.
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Simulations showed that a source distribution modeled
after the NOVA experiment yielded a uniform capsule
illumination to within 20%. A surprising result was that
small asymmetries in the source distribution produced
capsule illuminations that differ by a factor of two.

Future work will include the ability to model moving
spatial boundaries. This will be done through the use of a
time-step method for the specific intensity whereby the
temporal integration is updated every time-step without
the need to integrate back to the starting time. This would
decrease the run-time by reducing the temporal domain of
the integration and allowing material boundaries to move
after the updated intensity is computed.
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