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EXAMINATION OF MHD FLUID FLOW IN GEOMETRIC ELEMENTS 
OF A FUSION REACTOR BLANKJZT USING THE CORE FLOW APPROACH 

M.S. TILLACK 
Mechonicol, Aerospace ond Nuclear Engineering Deportment, University of Colifornio, Las Angeles, Las Angeles, 
CA 90024-1597 USA 

The attractiveness of liquid metal blankets depends strongly on the degree of which peak pressures and temperatures can be 
controlled. These, in turn, are determined by the MHD pressure drop and velocity field. Accurate methods of predicting the 
pressure drop, velocity and temperature profiles in liquid metal blankets are necessary for blanket design and for plarming and 
analysis of experiments. 

The governing equations for MHD fluid flow are well known. However, solution of the full set of MHD equations is 
difficult in some geometries and parameter ranges of interest. In many cases, the most important MHD effects can be 
accurately modeled using a simplified approach, known as the “core flow approximation”, which neglect inertial and viscous 
terms. 

A core flow solution method has been developed utilizing the special properties of the MHD equations to reduce them to, at 
most, four two-dimensional partial differential equations. The method has been formulated in a very general way, to allow 
treatment of problems with tbree-dimensional magnetic field and complex channel shapes. 

Solutions have been obtained numerically for several cases of interest to fusion. These include conducting pipes with 
variable radius, variable transverse magnetic field strength, and arbitrary angle of the field with respect to the flow direction. 
Initial analysis has focused on localized perturbations, including expansions, contractions, and magnetic field entrance/exit 
regions. Benchmarking has been performed in cases for which data exist. The results indicate that the method is very powerful 
and could be generalized to treat most geometric elements of liquid metal blankets and high heat flux components. 

1. Introduction 

Some of the largest remaining uncertainties in liquid 
metal blanket behavior result from uncertainties in 
MHD fluid flow in complex blanket geometries and 
magnetic fields. One of the reasons these uncertainties 
are difficult to resolve stems from the complexity of the 
full set of MHD equations. 

In many cases, the most important MHD effects can 
be accurately modeled by using a simplified approach, 
known as the “core flow approximation”. Under suffi- 
ciently high magnetic fields, inertial and viscous forces 
become small. Neglecting these, and assuming small 
magnetic Reynolds number, a linear set of equations 
results, including Ohm’s law, the simplified momentum 
equation, and conservation of mass and current. 

A solution method is described here based on direct 
integration of the MHD equation along magnetic field 
lines, as first suggested by Kulikovskii [l]. The approach 
uses the special properties of the MHD equations to 
reduce them to, at most, four two-dimensional partial 
differential equations. The solution has been formulated 

in a very general way, to allow the solution of problems 
with three-dimensional magnetic field and complex 
channel shapes. 

In some cases, the core equations alone can not 
adequately describe the full details of the velocity pro- 
files in ducts. Care must be exercised in order to prop- 
erly account for inertial and viscous effects, or to dem- 
onstrate that they can be neglected. For example, the 
no-slip condition (zero velocity at the walls) leads to 
narrow boundary layers in which viscous forces are 
comparable with the MHD force. These are the Hart- 
mann boundary layers. In the cases treated here, the 
walls are conducting, such that the Hartmann layers 
carry negligible current. Thus, their effect on the core 
velocity and pressure fields is negligible. 

Geometrical or electrical constraints my lead to 
viscous boundary layers, internal (or “free shear”) layers, 
or inertial layers. A survey of these MHD layers can be 
found in refs. 2-4. In the circular pipe problems treated 
here, the boundary conditions present no special prob- 
lems except at the point where the field is tangent to the 
wall. Because this occurs only at a point, the problem 
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can be resolved. In general, if the walIs are smooth, 
have finite conductivity, and are not exactly parallel to 
the magnetic field, then the current and flow quantity in 
boundary layers are small. 

Finally, at sufficiently low values of the magnetic 
field, the magnetic force diminishes and the core flow 
approximation because invalid. The criteria which 
specify the valid range of application of this method are 
not fully known, except in the simplest geometries. 

2. Description of the direct integration method 

The equations describing liquid metal MHD fluid 
flow include both Maxwell’s equations and the 
Navier-Stokes equation. In dimensionless form, the 
Navier-Stokes equation is expressed as: 

;(“.v)“= -vp+,xe+& v2v. 0) 

The MHD body force is given by J X B, and the two 
dimensionless groups describing the relative magnitude 
of the terms are the Hartmann number (Ha) and the 
interaction parameter (N); 

Ha = aB,,@ (2) 

N = Ha2/Re (3) 
Re = pus/p. (4) 

When the Hartmann number and interaction parameter 
are sufficiently high, the majority of the flow is 
dominated by the balance between the pressure gradient 
and the electromagnetic force: 

vp=JxB. (5) 

This is the primary force balance in the “core” region. 
The force balance equation must be supplemented by 
Ohm’s law: 

J=u,(-v++vxB) (6) 

the conservation equations: 

v.v=o (7) 
v-J=0 (8) 

and the electrical and fluid boundary conditions, in 
order to fully determine the velocity profiles in the core. 
In this analysis, the magnetic Reynolds number is as- 
sumed small, such that the magnetic field is exactly 
equal to the externally applied field. (If this were not 
true, an additional equation for B would be needed.) 

Because of the unique properties of inviscid, inertia- 
less MHD flow, the equations can be integrated along 
magnetic field lines to obtain expressions for the un- 
known current, velocity, and electric potential fields in 
terms of two-dimensional functions of integration which 
are constant along magnetic field lines. The functions of 
integration are determined through application of the 
boundary conditions at the surface of the pipe. In this 
way, the three-dimensional system of equations in eight 
unknowns, eqs. (5)-(8), can be transformed to a cou- 
pled set of (at most) four two-dimensional partial dif- 
ferential equations in four unknowns [l]. The primary 
difficulty in this approach results from the fact that the 
currents and velocities are specified in the natural coor- 
dinate system of the magnetic field, whereas the 
boundary equations (which determine the solution) de- 
pend on the geometry of the wall. This results in coordi- 
nate system transformations as an inherent part of the 
method. 

The results of integration are as follows: 

Jl = 5 x VP 

(10) JII = Bxv+ .vp dI+A, 

$= - 
JJ( 

Bx& 
B2 ) 

.vp dl dl+A,I+A, (11) 

1 
VL = -- 

0tB2 
vP+$xv+ (12) 

91 = B+ 

+ V2P - dl+A,. 
UtB2 1 

Equation (9) is obtained directly from a cross prod- 
uct of B with the pressure balance equation, eq. (5). 
Similarly, eqn. (12) is obtained directly from a cross 
product of B with Ohm’s law. The parallel components 
of J and v  are then found by integrating the conserva- 
tion equations ((7) and (8)) along the magnetic field 
lines using the known perpendicular components. Fi- 
nally, the potential is found by integrating the parallel 
current, using: 

(14) 

The variable I represents the distance along B. 
In order to express boundary conditions on the 

functions of integration, the functions of integration 
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(p, A,, A,, A3) must be related to physical variables in 
the duct. For example, if the magnetic field lines define 
the x-direction, then (for the general, non-symmetric 
case) the four functions are replaced by +,(y, z), 
&,(v. z), KY, z), and u,,(Y, z). where 9, and #s refer 
to the potential evaluated at the left and right walls, p 
is the pressure (which does not vary along x), and uxo 
is the x-component of velocity evaluated at x=x0. 
These four functions are easily related to the original 
A,, A 2, A,, and p. For symmetric problems, only two 
functions are needed. These are chose to be p(y, z) and 
$(JJ, I), where $I can be evaluated at either wall or at 
some value of x. 

The four boundary equations which determine the 
functions of integration are mass and current conserva- 
tion expressed at the two walls which are intercepted by 
the field lines. For conducting ducts: 

o-I?=0 (15) 

@v$p=J,.I;, (16) 

where @ = u&ala is the wall conductance ratio, J, is 
the current density in the fluid, and the Laplacian, Vz, 
is performed in the wall only. Equation (16) follows 
from Ohm’s law in the wall (J, = - U,VJ#I) and current 
conservation ( V. J, = 0), where the right-hand side ( J, . 
R) is an effective source term coming from the fluid. 

For insulating ducts, currents return through the 
Hartmann boundary layers, and current conservation is 
expressed as (see [l]): 

07) 

Boundary conditions are needed on the functions of 
integration at the edges of the computational grid. At 
the inlet and outlet, fully-developed conditions are ap- 
plied: at the inlet p =pl and a/az = 0, at the outlet 
p = pz and a/k = 0. 

The equations given above are very general. They 
apply to any duct shape with any conductivity and any 
magnetic field intensity and direction. The primary 
restriction is that each field line must pass through walls 
at no more than two points, and that the walls are 
smooth (the normal vector is continuous). I f  a field line 
passes through more that two points (such as at a wall 
parallel to the field) then additional information must 
be supplied to resolve the electric potential along the 
wall. This results in “side” layers. The second 
condition - discontinuous wall direction - results in 
internal shear layers. These special cases can be treated 

approximately; however, no further attempt is made to 
discuss them here. 

3. Solution for a circular pipe with varying transverse 
and parallel magnetic field 

The method described above has been used to solve 
for the pressures and velocity profiles in a circular pipe 
with a varying magnetic field having components in 
both the transverse and parallel directions with respect 
to the flow. Solutions were obtained using a finite 
difference approximation to the derivatives. 

The geometry is shown in fig. 1. The magnitic field 
is given by: 

B= B,(z)f. (18) 

The computational grid is in the natural coordinate 
system of the magnetic field. The pipe is placed at an 
angle, a, with respect to the magnetic field, resulting in 
both transverse and parallel components. The magnetic 
coordinate system is Cartesian (x, y, z) and the cir- 
cular pipe wall is described by the angle 0 and longitu- 
dinal distance X. 

When a = 0, the field is entirely transverse. Exten- 
sive data have been taken at the ALEX facility for a 
conducting circular pipe in the entrance and exit region 
of a transverse magnetic field [5]. Comparisons have 
been made between the ALEX data and the direct 
integration method, and there is excellent agreement. 
To conserve space, only the axial pressure gradient and 
the transverse velocity profiles near the exit are pre- 
sented here. 

Figure 2 shows the normalized transverse magnetic 
field strength as a function of axial location, with z = 0 

computational grid 

Fig. 1. Circular pipe geometry. 
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I 
Axial Position. z 

Fig. 2. Transverse magnetic field strength in ALEX. 

located roughly at the point where the field drops to 
half of its maximum value. The wall conductance ratio 
is 0.026. In the experiment, Ha = 6400 and N = 10,000 
(in the analysis, both are assumed infinite). 

Figure 3 shows the experimental and calculated axial 
pressure gradient at y  = 0 (the center for the pipe) and 
y  = 1 (at the wall). The experimental pressure gradient 
is averaged over 6-inch intervals, which tends to smooth 
the non-uniformities. A noticeable “hump” exists just 
upstream of the exit at y  = 1. This behavior is much 
more pronounced at y  = 0, indicating the tendency for 
the flow to be retarded near the pipe center. The 
experimental data at y  = 0 were obtained from a com- 
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Fig. 3. Axial pressure gradient at y = 0 and y = 1: comparison 
with ALEX data. 

Fig. 5. Axial pressure profiles in the off-angle cylinder: (I = 0, 
15. 3o”. 
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Fig. 4. Axial velocity near z = 0: comparison with ALEX data. 

bination of the gradient at y  = 1 and the transverse 
pressure difference between y  = 0 and y  = 1. 

Figure 4 shows the longitudinal component of the 
velocity near the exit. The typical “M-shaped” profile is 
clearly seen. The calculated profile is shown shown 1 
cm upstream and 1 cm downstream of the exit, indicat- 
ing the rapid changes which occur there. All results are 
represented in dimensionless form, normalized by the 
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Fig. 6. Axial velocity profiles in the off-angle cylinder: (I = 0, 
15, 3o”. 

maximum field strength, the pipe radius, the average 
velocity, and the conductivity of the fluid. 

While experimental verification is not available, 
problems with a # 0 have been examined. As an exam- 
ple, angles of 0, 15, and 30” were solved with a mag- 
netic field strength changing from 1 to 0.5 over 1.5 pipe 
radii. Results are shown in figs. 5-7. Figure 5 shows 
that the axial pressure gradients are nearly identical of 
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Fig. 7. Radial velocity profiles in the off-angle cylinder: a = 0, 
15, 3o”. 

the three cases (given the same axial pressure difference 
applied across the pipes). However, as seen in figs. 6 
and 7, the longitudinal and radial velocity profiles show 
significant differences. Higher angles result in lower 
bulk flow rates. Differences in the axial component of 
velocity are more pronounced than in the component 
normal to the wall. 

4. Solution for a circular pipe with arbitrarily varying 
radius 

Another problem solved using the direct integration 
method consists of a straight circular pipe with a 
smoothly varying radius located in a uniform transverse 
field. The geometry is shown in fig. 8. The radius is 
given by R(z), where the z coordinate represents the 
axial distance along the pipe. In this case, symmetry 
leads to A, = 0 and A, = 0, and the unknowns are 
simply p and + - the pressure and electric potential 
along the center plane of the pipe (x = 0). 

The normal to the wall, used in eqs. (15) and (16), is 
determined from the slope of the pipe wall. The slope is 
given by dR/dz = y, and the parameters /3 and 6, 
which are used in defining the normal, are given by: 

s= J&2. (20) 

Then the normal is expressed as: 

ii = 28 sine -9s cod + i/3. 

(21) 

(22) 

Numerically, this system of equations is much easier 
to solve on a rectangular grid. In order to provide this, a 

Fig. 8. Geometry for the variable-radius pipe. 
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Fig. 11. Velocity vector field at x = 0 for the orifice expansion. 

Figures 10 and 11 show the resulting pressure distri- 
bution and velocity vector field (at x = 0). The effect of 
the perturbation is restricted to within a few radii of the 
region in which the radius is changing. 

The pressure varies linearly with h throughout the 
bulk of the pipe. Near the perturbation, there is a deep 
well that is related to the vertical currents. The fluid is 
accelerated as it enters this region, and decelerated as it 
climbs up the back side. Near the pipe center, the 
velocity decreases nearly to zero. Theory predicts for a 
sufficiently low conductance ratio and rapid expansion 
that a recirculating eddy may form; however, this is not 

0 I .  

Fig. 9. Computational grid for the orifice expansion. 

coordinate transformation was made to scale the radial 
coordinate such that it varies between 0 and 1. Rather 
than the ( y  - z) plane, the (1 - A) computational plane 
was used, where: 

11 =y/R(X) (23) 

x=z (24) 

x=x/R(X). (25) 

The domain of the solution is now x = 0,O Q TJ Q 1, and 
OgX<L. 

A sample problem shown here is for a simple orifice 
expansion. The outlet radius is 1.5 times the inlet, with 
the expansion occurring over 1 pipe radius (see fig. 9). 
The wall conductance ratio is 0.005. 

P 

Fig. 10. Pressure profile for the orifice expansion. 
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observed in the present case. (Note: the scaling on the 
vector field plots tends to exaggerate the vertical com- 
ponent over the axial component. The aspect ratio of 
the pipe is 10 : 1.) 

5. Concluding remarks 

The core flow approximation greatly simplifies solu- 
tion of the MHD equations. A general approach has 
been presented here which can, in principle, treat prob- 
lems with great geometric complexity in both the mag- 
netic field and the structure. Solutions have been ob- 
tained in circular conducting pipes with varying field 
strength, pipe radius, and angle between the field and 
the pipe axis. However, solutions for even more com- 
plex problems can and should be demonstrated before 
the full capabilities of the method can be assessed. 
Further work is also needed in order to fully understand 
the parameter ranges and geometries under which the 
core flow approximation is valid. 
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