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ABSTRACT

Analyses were performed of the effect of Hartmann layers and side layers
on heat transfer in laminar MHD flow in ducts and the dependence on
the magnitude of the Hartmann number. Analytical and numerical
results are presented for both fully developed and thermaily developing
cases. The presence of side layers in a rectangular duct usually increases
the heat transier coefficient on the side layer walls and decreases the heat
transfer coefficient on the other two walls. For ducts with uniform
thickness and conductivity on all walls, the studies show that a duct
with higher conductance ratio gives higher average Nusselt number on
the side wall. However, this behavior depends on the combination of
Hartmann number and the conductance ratio. The heat generation inside
the duct enhances the heat transfer coefficient.

INTRODUCTION

A magnetic ficld is known to modify the velocity profile and
suppress trbulence in an electrically conducting fluid. Hartmann
boundary layers exist in channeis along the walls which interseci
magnetic field lines. These are usuvally thin, with steep velocity
gradients, and carry a small fraction of the total flow. Another type of
hydrodynamic boundary layer, called a side layer, is found when a wall
is parallel to the magnetic field lines!. In a side layer, there can be a
significant amount of fluid flow in a very thin layer. These unusuai
velocity profiles affect the temperawre profile and heat transfer, as
compared to the velocity profile for nonconducting fluids. In addition, at
very high Hartmann number (Ha) and Inieraction parameter (N), these
layers become very thin and it may be possible to ignore the detailed
velocity profile or 1o account for the influence of boundary layers on
heat transfer in a simplified manner. For "one-dimensional” heat transfer
in a side layer, the energy equation was solved for a constant wall heat
flux boundary condition. For the thermally developing case, the
temperature profile was expanded in a series of Chebyshev polynomials
and the coefficients in the Chebyshev expansion were obtained using
the spectral-tau method. The thermally developing case with a two-
dimensional velocity profile in a square duct was solved numerically
using a three-dimensional finite difference computer program.

FLOW IN A RECTANGULAR DUCT

In the case of MHD flow in a rectangular duct, hydrodynamic
boundary layers exist not only at the walls perpendicular to the field,
but also at walls parallel 10 it. The boundary layers on walls parallel to
the flow are calied side layers}:2. The flow characteristics in this type
of geometry can be specified for different combinations of boundary
conditions. For flow in a rectangular duct with perfectly
conductingwalls perpendicular to the field and thin walls of arbitrary
conductivity parallel to the field, the exact fully developed velocity
profile was obtained by I. C. R. Hunt!. The velocity distribution
obtained using Hunt's solution (with a conduciance ratio of 0.07 for the
wall parallel to the field) is plotted in Fig.1 for Hartmann numbers
equal to 1000. The most remarkable feature is that the velocity in the

boundary layer is much higher than that in the flow core. In addition, a
region with negative velocities exists in the vicinity of the interface
between the boundary layer and the flow core.

HEAT TRANSFER OF ONE-DIMENSIONAL SIDE LAYER

Unlike the Hartmann layer, the effect of a side layer on heat
transfer has not been addressed in the past few years. A typical example
of a side layer can be observed in MHD flows in a rectangular duct at
walis parallel to the ficld (see Fig. 1). To study the effect of side layers
on heat transfer in a simplified way, the velocity profile mentioned
above is evaluated at the centerpoint of the wall parallel to the magnetic
field (that is, in the middle of the side layer). Thus, this velocity profile
is a function only of distance away from the wall.

The origin of the coordinate system is taken as the point where
the thermal entrance region initiates. The energy equation with neglect
of Joule heating is written as:
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where u is the velocity profile given by Hunt! as an infinite series
solution evaluated at the center of the side layer. In order to determine
the temperature in the thermal entrance region, it is convenient to define
a temperature T as follows:

T=Tw+ T )
where the fluid temperature in the fully developed region is designated

by Teo. For uniform wall heat flux, the temperature field Too satisfies
the following equation:
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with boundary conditions as follows:
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An overall energy balance relates the rise in bulk temperature 10
the total energy input in the coolant flow as:
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Fig. 1 Quarter core velocity profiles for different Hartmann number

Fig. 1a Geomaetry of Hunt's solution, Fig. 1b Hartmann number = 1000,

Fig. ¢ Hanmann number = 50

Then, Teo yicids

Te=-1—2—4aw) (s)
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where the function G(y) can be obtained by using direct integration.
By substituting this equation into equation (3) the following relation
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Using equation (1) the following relation is obtainable:
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with boundary conditions as follows:

x=0; TH=-Too;

The solution of equation (7) can be expressed as follows:
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where the Reynolds number Re and Prandtl number Pr are defined as
usual, and By, and Yy are eigenvalues and eigenfunctions of the Sturm-
Liouville type differential equation,
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with boundary conditions as follows:
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To solve the above equation, the solution Yy is expanded in a
series of Chebyshev polynomials:
Yo= ¥ a] T} (10)
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The coefficients in the Chebyshev expansion (aj) were obtained using
the spectral-tau method. To judge the accuracy of this method, the
Hartmann velocity profile was introduced into equation (9) and the
results of calculated eigenvalues are compared with Sicgel's3 values for
Hartmann number equal 10 4 (Table 1).

Table 1: Eigenvatues of Equation (9)

(Hartmann Number = 4)
Present Method Seigel's Solution
n Bn Bn
1 14.78 14.7866
2 56.52 56.5509
3 124 855 1249158
4 219.742 219.8498
5 341.17 341.3385

The coefficients Cy in equation (8) can be obtained using the initial
condition for T+ atx =0.
1
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The above integrations arc done using Gauss-Legendre quadrature with
96 roots. The local nusseit number Nu is defined as :
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In the case of constant wall heat flux, Tm-Ty is given by the following
equation:

T - w=-c(1)-9);3 3 CnYn(1) exp (-umBn®) (13)
n=1

Consequently, the Nusselt number becomes:
Nu= (14)
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Figure 2 shows the relation beiween local Nusselt number and
nondimensional axial location for different Hartmann numbers. The
resulis indicate that the Nusselt number for side layers increases
indefinitely as the Hartmann number increases. This behavior is
expected, since as the Hartmann number increases the side layer
becomes thinner and the flow rate in the side layer increases.
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Fig. 2 Local Nusselt number vs. dimensionless axial locations for
one-dimensional side layer

HEAT TRANSFER OF MHD FLOW IN A RECTANGULAR DUCT

It is known that the presence of side layers increases the heat
transfer on those walls, but there are many details which are unknown.
For instance, it is not clear whether the increased heat transfer on the
side layer walls occurs at the expense of decreased heat transfer on the
other two walls. The magnitude of the increase in heat transfer as a
function of wall conductance ratio has not yet been quantified. To better
address the heat transfer issues, & fully three-dimensionat finite
difference heat transfer code was developed. This code solves the energy
equation, given any arbitrary velocity profile. using the hybrid
differencing algorithm. The code was first used to analyze the problem
of thermally developing flow in a square duct, with uniform heat flux
boundary conditions on all four walls. The velocity profile was the
exact solution for flow in a square duct (due to J. C. R. Hunt). A
nonuniform grid was used, with a fine mesh in the side layer (e.g. for
Hartmann number equal to 1000, 15 mesh points are used within one
side layer).

A "side layer” Nusselt number is defined as the average Nusselt
number for the wall with the side layer. This is plotted against
dimensionless axial location for different Hartmann numbers in Figure
3. The results indicate that the average side layer Nusselt number
increases with increasing Hartmann number. This confirms the
expectation that side layers are beneficial in increasing heat transfer at
the wall parallel to the magnetic ficld due to the increased flow in the
side layer. The wall average Nusselt number for the Hartmann layer vs.
dimensionless axial location is plotted in Figure 4 for the same cases.
As the Hartmann number increases, the flow in the side layer increases,
and the core velocity therefore decreases. This tends to make the Nusselt
number decrease on the Hartmann layer walls. However, for Hartmann
numbers of 20 and 50, the resuits are very close wogether, with the
Nusselt number slighty less for Ha = 20. This is probably due to the
fact that the Hartmann boundary layer is thicker for lower Hartmann
number. Figures 5 and 6 show the temperature surface plots for two
different Hartmann numbers at about 50 diameters downsueam. The
reduction of hcat transfer coefficient on the Hartmann wall at high
Hartmann number results in a much higher temperature distribution
along that wall. The wall temperature distributions along the side layer
and Hartmann layer are illustrated in Fig. 7. Note that the horizontal
axis represents the distance along either the side layer wall or the
Hantmann layer wall, depending on which curve is being considered.
The maximum wall tem occurs on the Hartmann iayer wall at
the interface of the side layer and core. This is probably due to the
negative velocity where the side layer meets the core.
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Fig. 3 Side layer Nusseit number vs dimensionless axial
location for different Hartmann numbers

To focus attention on the cffect of wall conductivity on heat

transfer, Walker'sS analytic solution for MHD flow in a conducting
rectangular duct was used. This velocity solution is similar to Hunt's,
but allows for arbitrary (but equal) conductivities on both walls. Using
this velocity profile, the heat transfer is investigated when the heat flux
is applied to only one wall, which has the side layer, 10 simulate the
reactor first wall condition. The results of investigations on the effect of
conductance ratios are condensed in Figs. 8 and 9. Fig. 8 shows that the
maximum wall temperature occurs at the corner of the duct, and the
temperature difference (Tw-Tp) is reduced when the conductance ratio
increases. Fig. 9 indicates that the average side layer wall Nusselt
number begins to decrease on the side walls at a wall conductance ratio
less than =0.05 (this range of conductance ratio is relevant to fusion
reactor blanket design) at the same dimensionless axial position. This
result is particularly interesting since the MHD pressure drop increases
when a highly electrically conducting duct is introduced using liquid
metal fluid for a fusion blanket design. To reduce the pressure drop, the
concept of using an insulated wall in a liquid metal blanket coolant duct
will not give a better heat transfer coefficient than a conducting duct.
The design of the liquid metal blanket will therefore require the
optimization of minimizing pressure drop and also must providing a
reasonable heat transfer coefficient. To explain the reduction of heat
transfer on the side wall at lower conductance ratio, the core velocity vs
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Fig. 4 Average Hartmann layer Nusselt number vs dimensionless
axial location for different Hartmann numbers
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Fig. 5 Quarter core temperature surface plot at 15 diameter
downstream using Hunt's solution for Ha = 1000

(four-side healed, duct size = 10 cm x 10 ¢cm, Q" = 64Wrcm?)
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Fig. 6 Quarter core temperature surface plot at 15 diameter
downstream using Hunt's solution for Ha = 50

(four-side heated. duct size = 10 cm x 10 cm, " = 64W/cm?2)
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Fig. 7 Wall iemperature distribution along Hartmann and side wall
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Fig. 8 Wall temperature distribution along Hartmann and side walt
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Fig. 9 Nusselt Number Behavior for Different Wall Conductance
Ratios



conductance ratio is plotted in Fig. 10. The core velocity increases (side
layer flow decreses) at a lower conductance ratio, hence the Nusselt
number decreases. The predictions of core velocity based on the core
flow approximation are also shown in Fig. 10. The results indicate that
the core velocity calculated using the core flow approximation is very
different than that calculated by the full solution.
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Fig. 10 Core velocity vs. conductance ratio for different Hartmann
numbers

In a fusion reactor, the heat generation due to neutron interaction
within a blanket flow channel duct is about the same as the heat
transported into the duct due to the surface heat flux. The effect of the
heat generated volumetrically in the liquid-metal coolant may reduce the
heat transfer coefficient when a skewed velocity profile is introduced
into a fusion enviormem?. To address this problem more realistically,
Walker's velocity profile is considered with one side wall heated. in
addition to bulk heating. The average Nusselt numbers of the side layer
wall with uniform heat flux boundary are plotted against the
dimensioniess axial locations for the bulk heating cases in Fig. 11 to
compare with the results without bulk heating. The heat transfer
coefficients increase about 40% at x/d equal to 50 for conductance ratio
= 0.1 and about 20% at the same location for-0.01 conductance ratio.
These results indicate that the presence of internal heat generation
increases the coolant bulk temperature, hence the Nusselt number
increases. This result is consistent with the previous study our group
has done?. In that stdy they showed that the effect of volumetric heat
generation affects heat transfer and the effect is more pronounced for
nonuniform velocity profile. The presence of side layer results in the
relationship between nonuniform velocity profile and Nusselt number.
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Fig. 11 The effect of wall conductance ratio and bulk heating on heat
transfer

SUMMARY

Analytical solutions for the Nusselt number have been obtained for
fully developed one-dimensional side flow in thermally developing and
developed regions. The results indicate that the existance of side layer
increases the heat wansfer coefficient indefinitely with the Hartmann
number. Two-dimensional fully developed velocity profiles for
arectangular duct were used 10 study the heat transfer in a rectangular
duct which includes both side layers and Hartmann layers. The analyses
were performed using a three-dimensional finite difference computer
program for thermally developing regions. The resuits confirm the
expectation that side layers are beneficial in increasing heat transfer,
However, the heat transfer coefficients on the Hartmann layer walls get
worse as the side layers get better. The houest temperature occurs on
the Hantmann layer wall at the interface of the side layer and core when
all four walls are heated, and at the comer when only one wall is heated.
The studies show that the enhancement of heat transfer coefficient
depends on wall conductance ratio and the presence of internal heat
generation increases the coolant bulk temperature, hence the Nusselt
number increases.

NOMENCLATURE

a = one half of channei width

¢ = conductance ratio

¢p = heat capacity

h = heat transfer coefficient

k = thermal diffusivity

Nu = Nusselt number

q" = heat flux at wall

q" = volumetric heat generation rate
Pe = Peclet number

T = temperamre

u = velocity of fluid

x = axial coordinate

y = coordinate normal to side layer wall

Greek

v = kinematic viscosity

A = thermal conductivity

1 = dimensionless y coordinate

Subscripts

w= wall
m = mean value
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