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ABSTRACT

A new computer code has been developed with the
capability to model laminar liquid metal fluid flow and heat
transfer in relatively complex geometries at parameter
values greater than previously possible with a transient 3-D
“full” numerical solution of the MHD equations. The full
solution method, which includes viscous and inertial
terms, provides an exact solution for boundary layers and
is valid over a wide range of flow parameters. Previous
attempts at numerically solving the full MHD equations
have been limited in the range of magnetic field strengths
(B) and Reynolds number (Re) which could be accurately
modelled. Numerical techniques for treating problems at
high B and Re are implemented in this code, named KAT.

The KAT code is written in rectangular coordinates.
with a sophisticated mesh generator and boundary
condition input routines. Single-duct and multiple-duct
geometries can be modelled with arbitrary wall
conductivity and magnetic field variation throughout the
solution domain. The code has been tested and
benchmarked against analytical solutions and fully-
developed very highly accurate numerical solution obtained
by 2-D finite element method (FEM). The KAT solutions
are in very good agreement with analytic and FEM
solutions. The KAT code was applied to a right-angle
rectangular bend problem with inclined B-field. Finally,
the capabilities of the code and future applications are
discussed.

INTRODUCTION

Conditions present in a high-field tokamak reactor
often allow relatively accurate solutions for MHD fluid
flow using the so-called “‘core flow approximation,” in
which inertia and viscous terms are omitted or treated in a
simplified way.! The core flow approximation allows a
much simpler numerical solution as compared to solving
the full Navier-Stokes equation.

However, there are several reasons why a full 3-D
solution capability for the MHD equations is highly
desirable:
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1. The full solution is very general.

* no fundamental approximations are made, so correc-
tions are not required (e.g., for side layers)

* more geometric capability exists (compared to the
"reduced" core solution). For example, the KAT
code treats completely arbitrary 3-D magnetic field
distribution and any geometry which can be framed
in rectangular coordinates.

» the code can be extended in a straightforward way

for unsteady, finite magnetic Reynolds number (Repy,),
turbulence modelling, etc.

2. The full solution has a wider potential range of

applicability, particularly at lower parameter ranges where
the core solution breaks down.

3. Some specific geometries are expected to exhibit
mertgal effects, which cannot be treated with a core
solution. E.g.,

* abrupt changes in geomertry (orifice, manifold)
* moderate changes in high-velocity layers (side layers)
* flow situations with large parallel component of B

4. Some issues depend more strongly on boundary
layers, particularly heat and mass transport. For

developing flow, boundary layers are more accurately
treated by a full soluton.

The primary drawback to the full solution is the large
amount of computer memory and time needed to solve
very complex problems. In this regard, advanced
numerical methods can help to make the full solution more

;raqtablc for a wide array of geometries of interest for
usion.

Previous attempts at full solutions have met with
limited success.2-f‘ Accuracy and/or convergence were
poor and geometric capability limited.

The KAT code has been developed with the goal of
treating generalized Cartesian geometries at parameter
ranges approaching or exceeding Ha=1000, Re=1000,
N=1000. This includes single-duct (straight ducts,
various bends, orifices) and multiple-duct geometries
(parallel channels, manifolds).



The code has been tested by comparing with analytic
and highly accurate 2-D FEM solutions.> Parameter
ranges as high as N=200, Re=500, and Ha=316 have
shown excellent agreement. Moreover, in order to show
the potential of the KAT code for more compiex geometry,
the code was applied to a right-angle rectangular bend
problem with inclined B-field. Future directions for the
KAT code and the full solution in general are discussed in
the conclusions.

BASIC EQUATIONS
The governing equations are written in non-
dimensional form, including continuity, the momentum

equation, the energy equation, and the electric potential
equation (derived from the divergence of Ohm’s law):
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The variables are normalized as shown in Table 1.

Table 1. Non-dimensional parameters
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where Re is Reynolds number, Pe is Peclet number, Gr is
Grashof number, Ec is Eckert number, Ha is Hartmann
number and N is the interaction parameter. Q is volumetric
heat source. o is electrical conductivity of fluid. T is
temperature. To and T) are reference temperatures.

SOLUTION ALGORITHM

The solution procedure uses primitive variables (u, v,

w, p, ¢, 8). A time-advancing technique is applied, in
which a steady-state problem is treated by solving a time-
dependent problem with the initial guess serving as the
initial condition. Equations are discretized by a finite
difference (finite control volume) method on the well-
known staggered-grid system.
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Figure 1. Flow Chart for KAT



The non-linear convective terms are treated by the
CONDIF method (Controlled Numerical Diffusion with
Internal Feedback).® This scheme is based on the central-
differencing scheme without anomalous numerical
oscillation and can achieve good convergence and high
accuracy at relatively high cell Reynolds number.

The pressure correction method is critical to obtaining
good convergence in MHD problems. In KAT, the
coupling between pressure and velocity fields is obtained
by solving the pressure correction equation:
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where, 8p* = p

*(+1) _ 5* (M) (here, n s time step

index), At* is time increment and V*«0i* is the residual of
mass.

The flow chart for KAT code is shown in Figure 1.
Following the initial velocity(u*), magnetic field(B*) and

temperature(6) guess, at first, the energy equation is

solved and the electric potentials(¢p*) are solved using the
potential equation. Electric current(J*) is obtained from

Ohm’s law using u*, B* and ¢*, and substituted into the
momentum equation in order to evaluate the Lorentz force

term(J*xB*). At this point, the momentum equation is

solved for a tentative velocity(@*). The pressure correction
equation is then solved to get the amount of the pressure

correction (8p*). Finally, all variables of the velocity and
pressure fields are corrected. Functions used in the

correction process of variables, f and g, are defined as
follows:

f(u*(“), 8p*)= . A V*§p*,
g(p*("), 8p*)= p*(n) + Sp*. (6)

This correction provides the solution at the end of a given
time step. Until steady-state is achieved, this entire
procedure is repeated.

In the KAT code, two Poisson equations, egs. (4) and
(5), are solved iteratively in each time step. These
computations are very time consuming processes,
especially at the beginning of computation. In order to
reduce the computational time, a cyclic reduction
successive over relaxation method(CRSOR) is used as the
matrix solver. This method is suitable for vector machines
such as CRAY computers.

BENCHMARKING

Initial tests of KAT were performed in straight
rectangular channels with insulated and conducting walls
and constant magnetic field. Slug flow inlet conditions
were applied. The velocities were developing in the
downstream direction and achieved a fully-developed
profile within the solution domain. This fully-developed
solution was then compared with analytic and 2-D FEM
solutions to test the accuracy.

Figure 2 shows the problem definition and geometry.

The channel width was “2a” and the channel length
was "4a", here "a" was the channel half-width. The
boundary conditions include zero velocity at the wall, so-
called "non-slip velocity condition”, and zero current out
of the channel. At the outlet, a constant pressure(p*=0.0)
was specified. The parameters of this MHD flows were

in the ranges of Ha=100~316, N=200 and Re=50~500.

In the case of conducting walls, the wall conductance
ratio, ¢, was 0.01,
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where t is the wall thickness, and 6w and Of are the wall
and fluid conductivides.

The computations were carried out only for a half-
domain of the channel in z-direction due to symmetry. A
typical number of grids was 16000((x,y,z)=(20,40,20)].
The CPU time was around 2 hours per case.

For the insulated channel case, the velocity prediction
of KAT in the fully-developed region is compared with the
2-D FEM solution of MH2D6 in Figure 3. Agreement is
very good. MH2D was tested against Shercliff’s analytic
solution? with perfect agreement.

Figure 4 shows the velocity profile in the Hartmann
layer. The result of KAT is in excellent agreement with the
classical Hartmann profile.
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Figure 2. Problem definition and geometry of the channel
for the developing flow test cases.

For the conducting channel case, the velocity profile in
the side layer is compared with the prediction of MH2D in
Figure 5. Again, very good agreement is found in the
fully-developed regime.

Figure 6 shows the tendency of the solution behavior
as Ha increases from 100 to 316 (i.e., Re increases from
50 to 500 at fixed N). The core velocity decreases as Ha
increases, while on the other hand, the side layer velocity
increases as Ha increases.

A 3-D view of the wvelocity profile at the fully-
developed flow region, in case of Ha=200 and ¢=0.01, is
shown in Figure 7. The velocity profiles in the side layer
and Hartmann layer are clearly visible.
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Figure 3. Side layer velocity(u) profile at the centerline —
comparison between KAT and MH2D in the fully-
developed flow region.
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Figure 4. Hartmann layer velocity(u) profile at the
centerline ~ comparison between KAT and Hartmann's
solution in the fully-developed region.
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Figure 5. Comparison of side layer velocity(u) profile with
MH2D in the fully-developed region
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Figure 6 Side layer velocity profiles under various Ha.

Figure 7 3-D view of the velocity profile at the fully-
developed flow region in case of Ha=200 and ¢=0.01.

NUMERICAL ANALYSIS OF A RIGHT-ANGLE
RECTANGULAR BEND

In the previous section, the accuracy of the KAT code
was discussed. In this section, the potential of the KAT
code is discussed through the application to a problem with
more complicated geometry and boundary conditions.

In order to show the potential of the KAT code, a
right-angle rectangular bend problem was analyzed. The
problem definition and geometry are shown in Figure 8.
The channel cross-section was a square shape, and its
width was "2a". The length of the channel both before and
after the bend part were "4a". A constant inclined



magnetic field B*=(B’;,B;,B;) was applied: 1i.e.,
B;=cos45°, B} =sin450° and B,=0. The boundary

conditions included non-slip velocity at the wall, and zero
current out of the channel. At the outlet, a constant
pressure (p*=0.0) was specified.

The grid configuration in the x-y plane is shown in
Figure 9. The number of grids was 44x44x16, and

CRAY-I CPU time was around 5 hours for this case. The
grid lines were concentrated near all the boundaries.
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Figure 8 Problem definition of the right-angle rectangular
bend flow. Parameters are Ha=100 (Re=50) and ¢=0.01.
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Figure 9 Grid configuration on the x-y plane.

Figures 10-(a),(b) show the velocity vector fields on
the x-y plane at near the wall(a) and center(b). Near the
wall, no stagnation and separation/recirculation region
appears. However, at the center plane, a large
separation/recirculation region is formed at the corner of
the bend. Small separation is observed near the outlet due
to the specified pressure boundary condition. This kind of
vortex would disappear if the length of the channel after
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Figure 10 Velocity vector field on the x-y plane. (a) near
the wall, (b) at the center plane.

the bend was much longer, but a longer channel calculation
would need much longer computational time.

Figure 11 shows the velocity profiles at the corner and
outlet (see the marks A, B, and C in Fig.10). Line A is
near the corner and line B is near the outlet.. It is found
that the peak velocity position moves from inner wall
side(y/2a~2) to outer wall side(y/2a~3). This is due to the
inclined magnetic field. The symmertric feature of this flow
around the corner is shown in Figure 12. This figure
shows that the two velocity components normal to the the
corner, u and v, have the same magnitude and profile [the
u-profile is shown at A, and the v-profile is shown at C in
Fig.10].
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Figure 11 Velocity profiles at the comer along line A and
at the outlet along line B in Fig. 10.
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Figure 12 Symmetric feature of the flow around the
corner, where, s is the normal distance from the corner.
[the u-profile is shown at A, and the v-profile is shown at
Cin Fig.10.]

CONCLUSIONS

A new computer code has been developed with the
capability to model laminar liquid metal fluid flow and heat
transfer in relatively complex geometries at parameter
values greater than previously possible with a transient 3-D
“full" numerical solution of the MHD equations.

This KAT code has the potential to solve many MHD
fluid flow and heat transfer problems. In the near future,
the KAT code will be applied to more difficult problems
which include more complicated geometries and boundary
conditions. For the fusion reactor applications such as
liquid metal cooling blanket design, it is difficult to analyze
the whole blanket module because the present existing
computer has some limitation such as CPU time and the
memory space. However, it could be analyzed for the
individual section or component such as manifold and
orifice, etc.

In order to obtain the solutions with less CPU time, the
matrix solver will have to be improved. And also,
vectorization of more than 98% of the code should be
possible. For the fusion reactor relevant conditions such as
Ha=10%~10° and full blanket, it will need an advanced
computer which has very high-speed computational ability
and very big main memory space around 100 times more
than the existing computer system.
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