6. Cascode Amplifiers and Cascode Current Mirrors

Sedra & Smith Sec. 7 (MOS portion)
(S&S 5th Ed: Sec. 6 MOS portion & ignore frequency response)
Cascode amplifier is a popular building block of ICs

Cascode Configuration

- **Signal circuit:** Current source becomes an open circuit

Cascode amplifier is a two-stage, CS-CG configuration

Signal circuit: Current source becomes an open circuit

![Signal circuit diagram](Image)

Signal circuit

- Current source becomes an open circuit

Cascode Configuration

- **CG stage**
 - Input: v_i, Output: v_1, Bias: I_0
 - Circuit diagram:
 - Input: v_i, Output: v_1
 - Bias: I_0
- **CS stage**
 - Input: v_i, Output: v_1, Bias: I_0
 - Circuit diagram:
 - Input: v_i, Output: v_1
 - Bias: I_0

Cascode amplifier is a two-stage, CS-CG configuration

F. Najmabadi, ECE102, Fall 2012 (2/17)
Small Signal Model of a Cascode Amplifier

- Lengthy analysis to find A_v (and a complicated equation). Simpler to compute open-loop gain (A_{vo}) and R_o.
- Text book introduces G_m method to find A_{vo} (See S&S Sec. 1)
- Here will find A_{vo} directly from the small signal model.
- However, the solution of and insight into Cascode amplifiers are best obtained using fundamental MOS configurations!

Note that A_{vo} and R_o calculated here are meant to find A_v and guide the choice of the active load. A_{vo} and R_o should be re-calculated for a practical circuit (see slides 14 & 15)
Open-Loop gain of a Cascode amplifier (using small signal model)

\[A_{vo} = \frac{v_o}{v_i} = -g_{m1}r_{o1} \times (1 + g_{m2}r_{o2}) \approx -g_{m1}r_{o1}g_{m2}r_{o2} \]

Node Voltage Method:

Node \(v_o \):
\[\frac{v_o - v_1}{r_{o2}} - g_{m2}v_1 = 0 \quad \Rightarrow \quad v_o = (1 + g_{m2}r_{o2})v_1 \]

Node \(v_1 \):
\[\frac{v_1}{r_{o1}} + g_{m1}v_i + 0 = 0 \quad \Rightarrow \quad v_1 = -g_{m1}r_{o1}v_i \]
Output Resistance of a Cascode amplifier (using small signal model)

Set \(v_i = 0 \), attach a voltage source \(v_x \), compute \(i_x, R_o = v_x / i_x \)

![Cascode Amplifier Diagram]

\[v_i = v_{gs1} = 0 \rightarrow g_{m1} v_{gs1} \text{ current source becomes open circuit} \]

KVL: \(v_{gs2} = -i_x r_{o1} \)

KCL: \(i_2 = i_x - g_{m2} v_{gs2} = i_x + i_x g_{m2} r_{o1} = i_x (1 + g_{m2} r_{o1}) \)

KVL: \(v_x = i_2 r_{o2} + i_x r_{o1} = i_x (1 + g_{m2} r_{o1}) r_{o2} + i_x r_{o1} \)

\[v_x = i_x [(1 + g_{m2} r_{o1}) r_{o2} + r_{o1}] \]

\[R_o = \frac{v_x}{i_x} = r_{o1} + r_{o2} + g_{m2} r_{o1} r_{o2} \]

Note: \(A_v = A_{vo} \times \frac{R'_L + R_o}{R'_L} \)
Gain of a Cascode Amplifier (using MOS Fundamental Configurations)

Cascode (signal circuit)

CG stage

CS stage

Note: Open Loop Gain: \((R'_L \to \infty)\)

\[R_{L1} = R_{i2} = \frac{r_{o2} + R'_L}{1 + g_{m2}r_{o2}} = \infty \quad \Rightarrow \quad A_{vo} = -g_{m1}r_{o1}g_{m2}r_{o2} \]
Output Resistance of a Cascode amplifier
(from Elementary R forms)

\[R_o = r_o (1 + g_m R) + R \]

\[R_o = r_{o2} (1 + g_{m2} r_{o1}) + r_{o1} \]

\[R_o = r_{o1} + r_{o2} + g_{m2} r_{o1} r_{o2} \]

\[R_o \approx r_{o2} (1 + g_{m2} r_{o1}) + r_{o1} \]

\[R_o \approx g_{m2} r_{o2} r_{o1} = r_{o1} (1 + g_{m2} r_{o2}) \]

\[R_o \approx g_{m2} r_{o1} r_{o2} \]
Cascode Amplifier needs a large load

\[A_{v2} = g_m r_o \parallel R'_L \]

\[R_{L1} = R_{i2} = \frac{r_{o2} + R'_L}{1 + g_m r_{o2}} \]

\[A_{v1} = -g_m r_o \parallel R_{i2} \]

\[R_o \approx g_m r_o r_{o2} \]

For simplicity assume \(r_{o1} = r_{o2} = r_o \) and \(g_m = g_m = g_m \)

<table>
<thead>
<tr>
<th>(R'_L)</th>
<th>(A_{v2}) (CG)</th>
<th>(R_{i2} = R_{L1})</th>
<th>(A_{v1}) (CS)</th>
<th>(A_v = A_{v1} A_{v2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\infty)</td>
<td>(g_m r_o)</td>
<td>(\infty)</td>
<td>(-g_m r_o)</td>
<td>(-(g_m r_o)^2)</td>
</tr>
<tr>
<td>((g_m r_o) r_o = R_o)</td>
<td>(g_m r_o)</td>
<td>(r_o)</td>
<td>(-0.5 g_m r_o)</td>
<td>(-0.5 (g_m r_o)^2)</td>
</tr>
<tr>
<td>(r_o)</td>
<td>(0.5 g_m r_o)</td>
<td>(2/g_m)</td>
<td>(-2)</td>
<td>(-g_m r_o)</td>
</tr>
</tbody>
</table>

Max. Gain

Practical Gain

Same gain as a single CS Amp.

For comparison, a two-stage CS-amplifier (CS-CS) has a gain of \(0.5 (g_m r_o)^2 \) for \(R'_L = r_o \) and a gain of \((g_m r_o)^2 \) for \(R'_L = g_m r_o^2 \).

- Cascode amplifier needs a large load \((R'_L = g_m r_o^2) \).
Cascode amplifier needs a large load to get a high gain

Gain did not increase compared to a CS amplifier.

This is still a useful circuit because of its high gain-bandwidth (we see this later).

To get a high gain, \(A_v = -0.5(g_m r_o)^2 \), we need to increase the small-signal resistance of the current mirror to
\[\approx (g_m r_o) r_o \]
- Cascode current mirror
Cascode Current mirror

- Identical MOS: Same μC_{ox} and V_t, & \(\frac{(W/L)_4}{(W/L)_3} = \frac{(W/L)_2}{(W/L)_1} \)
 - $v_{GS1} = v_{GS2}$ & $v_{GS3} = v_{GS4}$

- Usually: (W/L)$_1$ = (W/L)$_3$ and (W/L)$_2$ = (W/L)$_4$
 - $v_{GS1} = v_{GS2} = v_{GS3} = v_{GS4} = v_{GS}$

- Q1 and Q3 are always in saturation
- Q2 and Q4 both have to be in saturation for current mirror to work
 - $V_{DS2} > V_{GS} - V_t$
 - $V_{DS4} > V_{GS} - V_t$

- Straight forward to show \(I_o = \frac{(W/L)_2}{(W/L)_1} I_{ref} \)

Exercise: Show that a single current mirror (no cascoding) works only if $V_{D2} > V_{OV} - V_{SS}$ and a cascode current mirror requires $V_{D4} > 2V_{OV} - V_{SS}$
Small signal resistance of a cascode current mirror is quite large

\[\bar{R} = r_{o4}(1 + g_{m4}r_{o2}) + r_{o2} \]

Transistor numbering is different in different circuits
Be careful in applying formulas!
It is best to use elementary R forms to find \(\bar{R} \) instead of formula above.
PMOS cascode current mirror is similar to NMOS version

NMOS Cascode current mirror

PMOS Cascode current mirror
Cascode amplifier with a cascode current mirror/active load

Exercise: Draw the circuit for a PMOS cascode with a cascode current mirror (cascode current mirror would be made of NMOS).

\[I_{D1} = I_{D2} = I_{D3} = I_{D4} \]
Gain of a Cascode amplifier with a cascode current mirror/active load

Q2 (CG Amp)

\[A_{v2} = \frac{v_o}{v_1} \approx g_{m2} \left(r_{o2} \parallel R'_L \right) \approx g_{m2} r_{o2} \]

\[
R_{L1} = R_{i2} = \frac{r_{o2} + r_{o3} (1 + g_{m3} r_{o4}) + r_{o4}}{1 + g_{m2} r_{o2}} \\
\approx \frac{g_{m3} r_{o3} r_{o4}}{g_{m2} r_{o2}}
\]

Q1 (CS Amp)

\[A_{v1} = \frac{v_1}{v_i} = -g_{m1} \left(r_{o1} \parallel \frac{g_{m3} r_{o3} r_{o4}}{g_{m2} r_{o2}} \right) \]

\[A_{vo} = A_{v1} A_{v2} = -\frac{g_{m1} g_{m2} g_{m3} r_{o1} r_{o2} r_{o3} r_{o4}}{g_{m2} r_{o1} r_{o2} + g_{m3} r_{o3} r_{o4}} \]

Value for the same \(g_m \) and \(r_o \)

<table>
<thead>
<tr>
<th>(A_{v2})</th>
<th>(R_{L1} = R_{i2} \approx r_o)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_{v1} \approx -0.5 g_m r_o)</td>
<td>(A_{vo} = -0.5 (g_m r_o)^2)</td>
</tr>
</tbody>
</table>

F. Najmabadi, ECE102, Fall 2012 (14/17)
Output Resistance of a Cascode amplifier with a cascode current mirror/active load

\[R_1 = r_{o3}(1 + g_{m3}r_{o4}) + r_{o4} \]

\[R_2 = r_{o2}(1 + g_{m2}r_{o1}) + r_{o1} \]

\[R_o = R_1 \parallel R_2 \]

Value for the same \(g_m \) and \(r_o \)

\[R_1 \approx g_m r_o^2 \]

\[R_2 \approx g_m r_o^2 \]

\[R_o = 0.5 g_m r_o^2 \]
Why Cascode Amplifiers are popular?

Drawbacks:

- While A_{vo} are similar, Cascode has a very R_o (MΩ level).
 - should be followed with a CS or CD stage (infinite load for cascode)
 - BJT cascodes are not useful.
- Low voltage headroom (V_{DD} across 4 MOS)
 - Folded cascodes solve this.

Benefits:

- Much better high-frequency response (high gain-bandwidth).*
- Simpler biasing.

* We will see this later in our discussion of frequency response.
Folded Cascode increases voltage overhead*

* Folded cascode only helps the voltage overhead issue for difference amplifiers (see S&S pages 999-1000)