Exercises for Differential Amplifiers
Exercise 1: Compute \(V_D \), \(V_S \), \(V_{DS} \) and \(V_{GS} \) if \(I_{D3} = 2 \text{ mA} \), \(R_D = 500 \Omega \), \(V_{OV3} = 0.5 \text{ V} \), and identical Q1 & Q2 with \(\mu_n C_{ox} (W/L) = 8 \text{ mA/V}^2 \), \(V_t = 0.5 \text{ V} \), \(\lambda = 0 \).

A) For \(V_G = 0 \) and B) For \(V_G = 1 \text{ V} \). Repeat the exercise for \(\lambda = 0.1 \text{ V}^{-1} \).

- This exercise shows that precise biasing of Q1 and Q2 is not necessary as \(V_S \) adjusts itself automatically.
- Inclusion of channel-width modulation does not impact the bias points of Q1 and Q2 (which is set by the current source).
Ignoring channel-width modulation \((\lambda = 0)\)

\[
I_{D1} = I_{D2} = 0.5I_{D3} = 1 \text{ mA}
\]

KVL: \(V_{D1} = 2 - R_D I_{D1} = 2 - 0.5 = 1.5 \text{ V} \)

Assume Saturation

\[
1 \times 10^{-3} = I_{D1} = 0.5\mu_n C_{ox} (W / L) V_{OV1}^2 = 4 \times 10^{-3} V_{OV1}^2
\]

\[
V_{OV1} = 0.5 \text{ V}
\]

\[
V_{GS1} = V_{OV1} + V_t = 1 \text{ V}
\]

A) \(V_{G1} = 0 \)

\[
V_S = V_{G1} - V_{GS1} = 0 - 1 = -1 \text{ V}
\]

\[
V_{DS1} = V_{D1} - V_S = 1.5 - (-1) = 2.5 \text{ V}
\]

\[
V_{DS3} = V_S - (-2) = -1 + 2 = 1 \text{ V}
\]

\[
V_{DS1} > V_{OV1} \quad \& \quad V_{DS3} > V_{OV3} \Rightarrow \text{ Saturation}
\]

A) \(V_{G1} = 1 \)

\[
V_S = V_{G1} - V_{GS1} = 1 - 1 = 0
\]

\[
V_{DS1} = V_{D1} - V_S = 1.5 - 0 = 1.5 \text{ V}
\]

\[
V_{DS3} = V_S - (-2) = 0 + 2 = 2 \text{ V}
\]

\[
V_{DS1} > V_{OV1} \quad \& \quad V_{DS3} > V_{OV3} \Rightarrow \text{ Saturation}
\]

Note that as the bias voltage of Q1, \(V_{G1}, \) changes, \(V_S \) is adjusted automatically to get the necessary \(V_{OV1} \) and \(I_{D1} \)
Including channel-width modulation ($\lambda = 0.1$)

$$I_{D1} = I_{D2} = 0.5I_{D3} = 1 \text{ mA}$$

KVL:
$$V_{D1} = 2 - R_D I_{D1} = 2 - 0.5 = 1.5 \text{ V}$$

Assume Saturation

$$1 \times 10^{-3} = I_{D1} = 0.5\mu_nC_{ox}(W/L)V_{OV1}^2 (1 + \lambda_n V_{DS1})$$

$$V_{OV1}^2 (1 + 0.1V_{DS1}) = 0.25$$

Need to write V_{DS1} **in terms of** V_{OV1}:

$$V_{DS1} = V_{D1} - V_S$$
$$= V_{D1} + (V_{GS1} - V_G1)$$
$$= V_{D1} + (V_{OV1} + V_t) - V_G1$$
$$= V_{OV1} + (V_{D1} + V_t - V_G1)$$

For a given V_{G1}, we then substitute for V_{DS1} in I_D equation which leads to a cubic equation for V_{OV1}.
Including channel-width modulation ($\lambda = 0.1$)

\[V_{D1} = 1.5 \text{ V} \]

\[V_{OV1}^2 (1 + 0.1 V_{DS1}) = 0.25 \]

\[V_{DS1} = V_{D1} + (V_{OV1} + V_t) - V_{G1} \]

\[C) \quad V_{G1} = 0 \]

\[V_{DS1} = V_{OV1} + (1.5 + 0.5 - 0) = V_{OV1} + 2.0 \]

\[V_{OV1}^2 [1 + 0.1(V_{OV1} + 2.0)] = 0.25 \]

\[0.1V_{OV1}^3 + 1.2V_{OV1}^2 - 0.25 = 0 \]

\[V_{OV1} = 0.448 \text{ V} \]

\[V_{GS1} = V_{OV1} + V_t = 0.948 \text{ V} \]

\[V_S = V_{G1} - V_{GS1} = 0 - 0.948 = -0.948 \text{ V} \]

\[V_{DS1} = 2.0 + V_{OV1} = 2.448 \text{ V} \]

\[V_{DS3} = V_S - (-2) = -0.948 + 2 = 1.052 \text{ V} \]

\[D) \quad V_{G1} = 1 \text{ V} \]

\[V_{DS1} = V_{OV1} + (1.5 + 0.5 - 1) = V_{OV1} + 1.0 \]

\[V_{OV1}^2 [1 + 0.1(V_{OV1} + 1.0)] = 0.25 \]

\[0.1V_{OV1}^3 + 1.1V_{OV1}^2 - 0.25 = 0 \]

\[V_{OV1} = 0.467 \text{ V} \]

\[V_{GS1} = V_{OV1} + V_t = 0.967 \text{ V} \]

\[V_S = V_{G1} - V_{GS1} = 1 - 0.967 = +0.033 \text{ V} \]

\[V_{DS1} = 1.0 + V_{OV1} = 1.467 \text{ V} \]

\[V_{DS3} = V_S - (-2) = 0.033 + 2 = 2.033 \text{ V} \]
Bias voltage of Q1 and Q2 (V_G) does not affect I_{D1} as V_S adjusts itself automatically. V_G affects only V_{DS1} and V_{DS3} and precise biasing is NOT necessary.

Ignore channel-width modulation

<table>
<thead>
<tr>
<th>$I_{D1} = I_{D2}$</th>
<th>1.0 mA</th>
<th>1.0 mA</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{OV1} = V_{OV2}$</td>
<td>0.500 V</td>
<td>0.500 V</td>
</tr>
<tr>
<td>$V_{G1} = V_{G2}$</td>
<td>0 V</td>
<td>1.0 V</td>
</tr>
<tr>
<td>V_S</td>
<td>−1.00 V</td>
<td>0 V</td>
</tr>
<tr>
<td>V_{DS1}</td>
<td>2.50 V</td>
<td>1.50 V</td>
</tr>
<tr>
<td>V_{DS3}</td>
<td>1.00 V</td>
<td>2.0 V</td>
</tr>
</tbody>
</table>

Include channel-width modulation

<table>
<thead>
<tr>
<th>$I_{D1} = I_{D2}$</th>
<th>1.0 mA</th>
<th>1.0 mA</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{OV1} = V_{OV2}$</td>
<td>0.448 V</td>
<td>0.467 V</td>
</tr>
<tr>
<td>$V_{G1} = V_{G2}$</td>
<td>0 V</td>
<td>1.0 V</td>
</tr>
<tr>
<td>V_S</td>
<td>−0.948 V</td>
<td>0.033 V</td>
</tr>
<tr>
<td>V_{DS1}</td>
<td>2.448 V</td>
<td>1.467 V</td>
</tr>
<tr>
<td>V_{DS3}</td>
<td>1.052 V</td>
<td>2.033 V</td>
</tr>
</tbody>
</table>

Inclusion of channel-width modulation does not impact the bias points of Q1 and Q2 (which is set by the Q3 current source).
Exercise 2: Find the differential gain and \((W/L)\) of all transistors in the circuit below, Q3 & Q4 are matched, Q1 & Q2 are matched, all transistors have \(V_{OV} = 0.2\) V, \(\mu_n C_{ox} = 400\ \mu A/V^2\), \(\mu_p C_{ox} = 100\ \mu A/V^2\), and \(V_{An} = |V_{Ap}| = 3.6\) V. Ignore channel-width modulation in biasing calculations.

For symmetric circuits:

\[
v_{o2} = -v_{o1} \quad \rightarrow \quad v_{o,d} = v_{o2,d} - v_{o1,d} = -2v_{o1,d}
\]

\[
A_d = \frac{v_{o,d}}{v_d} = -2 \times \frac{v_{o1d}}{v_d} = \frac{v_{o1d}}{-0.5v_d}
\]
Since transistors are matched and have the same V_{OV}:

$I_{D1} = I_{D2} = I_{D3} = I_{D4} = 100 \, \mu A$

$100 \times 10^{-6} = I_{D1} = 0.5 \mu_n C_{ox} (W / L)_1 V_{OV1}^2$

$(W / L)_1 = 12.5 = (W / L)_2$

$100 \times 10^{-6} = I_{D3} = 0.5 \mu_p C_{ox} (W / L)_3 V_{OV3}^2$

$(W / L)_3 = 50 = (W / L)_4$

$$A_d = \frac{V_{o,d}}{v_d} = \frac{-0.5v_d}{v_d} = -g_{m1} (r_{o1} \parallel r_{o3})$$

$$g_{m1} = \frac{2I_{D1}}{V_{OV1}} = 10^{-3} \text{ A/V} \quad r_{o1} = \frac{V_{A1}}{I_{D1}} = 36 \, k \quad r_{o3} = \frac{V_{A3}}{I_{D3}} = 36 \, k$$

$$A_d = -g_{m1} (r_{o1} \parallel r_{o3}) = -10^{-3} (36 \, k \parallel 36 \, k) = -10^{-3} \times 18 \times 10^3 = -18$$
Exercise 3: The differential amplifier below should achieve a differential gain of 40 with a power consumption of 2 mW. All transistors operate with the same V_{OV}. Find (W/L) of all transistors, V_{G3}, V_{G4}, and V_{G5}.

($\mu_nC_{ox} = 400 \ \mu\text{A}/\text{V}^2$, $\mu_pC_{ox} = 100 \ \mu\text{A}/\text{V}^2$, $\lambda_n = 0.1 \ \text{/V}$, $\lambda_p = 0.2 \ \text{/V}$, and $V_{tn} = |V_{tp}| = 0.4 \ \text{V}$. Ignore channel-width modulation in biasing.

Power Consumption:

$P = 1.8I_{D5} = 2 \times 10^{-3} \rightarrow I_{D5} = 1.11 \ \text{mA}$

$I_{D1} = I_{D2} = I_{D3} = I_{D4} = 0.5I_{D5} = 0.556 \ \text{mA}$
\[A_d = \frac{v_{o,d}}{v_d} = \frac{v_{o,1d}}{-0.5v_d} = -g_{m1}(r_{o1} \parallel r_{o3}) \]

\[r_{o1} = \frac{1}{\lambda_n I_{D1}} \]

\[r_{o3} = \frac{1}{\lambda_p I_{D3}} = \frac{1}{\lambda_p I_{D1}} = \frac{\lambda_n}{\lambda_p} \times \frac{1}{\lambda_n I_{D1}} = \frac{\lambda_n}{\lambda_p} r_{o1} = 0.5r_{o1} \]

\[r_{o1} \parallel r_{o3} = \frac{r_{o1} \times (0.5r_{o1})}{r_{o1} + 0.5r_{o1}} = \frac{r_{o1}}{3} \]

\[|A_d| = +g_{m1}(r_{o1} \parallel r_{o3}) = \frac{1}{3} g_{m1} r_{o1} \]

\[= \frac{1}{3} \times \frac{2I_{D1}}{V_{OV1}} \times \frac{1}{\lambda_n I_{D1}} = \frac{2}{0.3 V_{OV1}} = 40 \]

\[V_{OV1} = 0.167 \text{ V} \]
\[I_{D1} = I_{D2} = I_{D3} = I_{D4} = 0.5I_{D5} = 0.556 \text{ mA} \]
\[V_{OV1} = V_{OV2} = V_{OV3} = V_{OV4} = V_{OV5} = 0.167 \text{ V} \]

\[I_{D1} = 0.5\mu_n C_{ox} (W / L)_1 V_{OV1}^2 \]
\[0.556 \times 10^{-3} = 0.5 \times 400 \times 10^{-6} (W / L)_1 \times (0.167)^2 \]
\[(W / L)_2 = (W / L)_1 = 100 \]

\[I_{D3} = 0.5\mu_p C_{ox} (W / L)_3 V_{OV3}^2 \]
\[0.556 \times 10^{-3} = 0.5 \times 100 \times 10^{-6} (W / L)_3 \times (0.167)^2 \]
\[(W / L)_4 = (W / L)_3 = 400 \]

\[I_{D5} = 0.5\mu_n C_{ox} (W / L)_5 V_{OV5}^2 \]
\[1.11 \times 10^{-3} = 0.5 \times 400 \times 10^{-6} (W / L)_5 \times (0.167)^2 \]
\[(W / L)_5 = 200 \]

\[V_{SG3} = V_{OV3} + |V_{tp}| = 0.167 + 0.4 = 0.567 \text{ V} \]
\[V_{G3} = V_{S3} - V_{SG3} = 1.8 - 0.567 = 1.233 \text{ V} \]

\[V_{GS5} = V_{OV5} + V_{tn} = 0.167 + 0.4 = 0.567 \text{ V} \]
\[V_{G5} = V_{GS5} + V_{S5} = 0.567 + 0 = 0.567 \text{ V} \]
Exercise 4: The circuit below is fabricated with $V_{An} = |V_{Ap}| = 3.6 \text{ V}$, $\mu_n C_{ox} = 100 \mu\text{A/V}^2$ & $\mu_p C_{ox} = 25 \mu\text{A/V}^2$. All transistors operate with $V_{OV} = 0.5 \text{ V}$. Find (W/L) of all transistors and the differential gain of the circuit.
\[\lambda_n = \lambda_p = \frac{1}{V_A} = \frac{1}{3.6} = 0.278 \text{ /V} \]

\[I_{D1} = I_{D2} = ... = I_{D8} = 0.5I_{D9} = 100 \mu \text{A} \]

\[V_{OV1} = V_{OV2} = ... = V_{OV8} = V_{OV9} = 0.5 \text{ V} \]

\[g_{m1} = g_{m2} = ... = g_{m8} = \frac{2I_{D1}}{V_{OV1}} = \frac{2 \times 100 \times 10^{-6}}{0.5} = 0.4 \text{ mA/V} \]

\[r_{o1} = r_{o2} = ... = r_{o8} = \frac{1}{\lambda I_{D1}} = \frac{1}{0.278 \times 100 \times 10^{-6}} = 36 \text{ k} \]

NMOS: Q1, Q2, Q3, & Q4:

\[I_{D1} = 0.5 \mu_n C_{ox} (W / L)_1 V_{OV1}^2 \]
\[100 \times 10^{-6} = 0.5 \times 100 \times 10^{-6} (W / L)_1 \times (0.5)^2 \]
\[(W / L)_4 = (W / L)_3 = (W / L)_2 = (W / L)_1 = 8 \]

PMOS: Q5, Q6, Q7, & Q8:

\[I_{D5} = 0.5 \mu_p C_{ox} (W / L)_5 V_{OV5}^2 \]
\[100 \times 10^{-6} = 0.5 \times 25 \times 10^{-6} (W / L)_1 \times (0.5)^2 \]
\[(W / L)_8 = (W / L)_7 = (W / L)_6 = (W / L)_5 = 32 \]
\[A_d = \frac{v_{o,d}}{v_d} = -2 \times \frac{v_{o,1d}}{v_d} = -0.5 \frac{v_{o,1d}}{v_d} \]

Method 1: Use formula for Cascode Amplifier on Lecture Set 6, slide 14 (which assumes \(g_m r_o \gg 1 \)):

\[A_d = \frac{v_{o,1d}}{-0.5v_d} = -0.5 (g_m r_o)^2 \]

\[A_d = -0.5(0.4 \times 10^{-3} \times 36 \times 10^3)^2 = -104 \]

Method 2: Use multistage amplifier calculations (similar to Lecture Set 6, slide 14 but not assuming \(g_m r_o \gg 1 \)):

\[R_L' = r_{o5}(1 + g_m r_{o7}) + r_{o7} \]

\[= 36 \times 10^3 \times (1 + 0.4 \times 36) + 36 \times 10^3 = 590 \text{ k} \]

\[A_{vQ3} = \frac{v_{o1,d}}{v_1} \approx g_m (r_{o3} \parallel R_L') \]

\[= 0.4 \times 10^{-3} \times (36 \text{ k} \parallel 590 \text{ k}) = 13.6 \]

\[R_{i3} = \frac{r_{o3} + R_L'}{1 + g_m r_{o3}} = 40.6 \text{ k} \]

\[A_{vQ1} = \frac{v_1}{(-0.5v_d)} = -g_m (r_{o1} \parallel R_{i3}) \]

\[= -0.4 \times 10^{-3} \times (36 \text{ k} \parallel 40.6 \text{ k}) = -7.63 \]

\[A_d = A_{vQ3} A_{vQ1} = -103.8 \]

\[g_m = g_{m2} = \ldots = g_{m8} = 0.4 \text{ mA/V} \]

\[r_{o1} = r_{o2} = \ldots = r_{o8} = 36 \text{ k} \]
Exercise 5: Assume Q3 and Q4 as well Q1 and Q2 are identical. Compute the differential gain.

This is a practice problem in constructing half-circuit.
Half-circuit for differential Gain
Zero voltage at symmetry line

Replace Q3 by
Elementary R forms

Half-circuit:

\[A_d = \frac{v_{o,d}}{v_d} = \frac{v_{o,1d}}{-0.5v_d} = -g_{m1}(r_{o1} \parallel r_{o3} \parallel R_p) \]
Exercise 6: Compute the differential gain.

- This problem has it all, half circuit, constructing resistances from elementary R form, and Cascode amplifier.
Since R_p value is not given, we cannot simplify R_L' expression using $g_m r_o >> 1$.

\[R_L' = r_{o5}[1 + g_m(r_{o7} || R_p/2)] + r_{o7} || R_p/2 \]

\[A_{vQ3} = v_{o1,d} / v_1 \approx g_{m3}(r_{o3} || R_L') \]
\[R_{i3} = \frac{r_{o3} + R_L'}{1 + g_{m3} r_{o3}} \]
\[A_{vQ1} = v_1 / (-0.5 v_d) = g_{m1}(r_{o1} || R_{i3}) \]

\[A_d = A_{vQ3} A_{vQ1} = -g_{m1} g_{m3}(r_{o1} || R_{i3})(r_{o3} || R_L') \]
Exercise 7: What is the input common-mode range in the circuit below. Q1 and Q2 are Identical and $R_D = 500$. Use $\mu_n C_{ox} (W/L) = 8 \text{ mA/V}^2$, $V_t = 0.5 \text{ V}$ and $V_{G3} = -1 \text{ V}$.

- The input common-mode level is the range of DC values that can be applied to the gate of Q1 and Q2 (bias + signal) for which transistors remain in saturation.
 - Basically we are looking for range of DC voltages (i.e., bias) that can be applied to Q1 and Q2 while keeping them in saturation.
 - Then, for any given bias voltage, we can calculate the range of common-mode signals that can be applied to the circuit.
- There are two limits: 1) for Q1 and Q2 remain in saturation, 2) for Q3 to remain in saturation.
- It is straightforward to extend this to active loads.
Assume Q1 and Q2 in Saturation

\[1 \times 10^{-3} = I_{D1} = 0.5 \mu_n C_{ox} (W / L) V_{OV1}^2 = 4 \times 10^{-3} V_{OV1}^2 \]

\[V_{OV1} = 0.5 \text{ V} \]

\[V_{GS1} = V_{OV1} + V_t = 1 \text{ V} \]

\[V_{D1} = 2 - R_D I_{D1} = 2 - 0.5 = 1.5 \text{ V} \]

\[V_{OV3} = V_{GS3} - V_t = V_{G3} - V_{S3} - V_t = -1 - (-2) - 0.5 = 0.5 \text{ V} \]

For Q3 in saturation:

\[V_{DS3} \geq V_{OV3} \]

\[V_{D3} - V_{S3} = V_S - (-2) \geq 0.5 \]

\[V_S \geq -2 + 0.5 = -1.5 \text{ V} \]

For Q1/Q2 in saturation:

\[V_{DS1} \geq V_{OV1} \]

\[V_{D1} - V_{S1} = 1.5 - V_S \geq 0.5 \]

\[V_S \leq 1.5 - 0.5 = 1 \text{ V} \]

\[V_{GS1} = V_{CM} - V_S \]

\[V_S = V_{CM} - 1 \]

\[-1.5 \leq V_{CM} - 1 \leq 1 \]

\[-0.5 \leq V_{CM} \leq 2 \text{ V} \]
Exercise 8: Circuit below is designed to operate at zero bias voltage at the gate of Q1 and Q2 (Q1 & Q2 are matched and $\lambda = 0$). The practical circuit, however includes a slight mis-match of $R_{D1} = R_D - 0.5 \Delta R_D$ and $R_{D2} = R_D + 0.5 \Delta R_D$ ($\Delta R_D / R_D$ is small).

A) If $v_1 = v_2 = 0$, find $V_o = v_{o2} - v_{o1}$ (Differential DC voltage at the output).

B) For what values of $V_{OS} = v_2 - v_1$, the DC output voltage will be zero. Ignore channel-width modulation.

- No amplifier chip can be manufactured with perfect symmetry. Mis-matches not only affect CMRR but DC voltages.
- Differential DC voltage at the output and the input offset voltage, V_{OS}, are important specs. Chips typically include pins for feedback to zero out these voltages.
- Note: v_1 and v_2 are DC values in this problem, they can be viewed either as mis-matched bias (and no signal) and/or signal (but with a matched “zero” bias).
A) If \(v_1 = v_2 = 0 \), find \(V_o = v_{o2} - v_{o1} \) (Differential DC voltage at the output):

\[
R_{D1} = R_D - 0.5\Delta R_D \quad \& \quad R_{D2} = R_D + 0.5\Delta R_D
\]

Since transistors are matched and \(V_{GS1} = V_{GS2} \) (because \(v_1 = v_2 \)):

\[
I_{D1} = I_{D2} = 0.5I_o
\]

\[
v_{o1} = V_{D1} = V_{DD} - R_{D1}I_{D1} = V_{DD} - 0.5I_o (R_D - 0.5\Delta R_D)
\]

\[
v_{o2} = V_{D2} = V_{DD} - R_{D2}I_{D2} = V_{DD} - 0.5I_o (R_D + 0.5\Delta R_D)
\]

\[
V_o = v_{o2} - v_{o1} = -0.5I_o\Delta R_D \quad \text{Output Offset Voltage}
\]
B) For what values of $V_{OS} = v_2 - v_1$, the DC output voltage will be zero. Ignore channel-width modulation.

$$V_o = v_{o2} - v_{o1} = -0.5I_o \Delta R_D$$ \hspace{1cm} \text{Output Offset Voltage}$$

$$I_{D1} = I_{D2} = 0.5I_o$$

Method 1: Viewing V_{OS} as the signal.

The bias voltages remain at zero and V_o has the above value. A differential signal $v_d = V_{OS}$ is applied to the circuit leading to a differential output, $v_{o,d}$. We want to find V_{OS} such that $v_{o,d} + V_o = 0$

$$v_1 = -0.5V_{OS} \quad \text{and} \quad v_2 = +0.5V_{OS}$$

$$v_{o1,d} = -g_mR_{D1}(-0.5V_{OS}) = +0.5g_mR_{D1}V_{OS}$$

$$v_{o2,d} = -g_mR_{D2}(+0.5V_{OS}) = -0.5g_mR_{D2}V_{OS}$$

$$v_{o,d} = v_{o2,d} - v_{o1,d} = -0.5g_mV_{OS}(R_{D2} + R_{D1})$$

$$v_{o,d} = -0.5g_mV_{OS}[R_D + \Delta R_D + R_D - \Delta R_D]$$

$$v_{o,d} = -g_mV_{OS}R_D = -V_o$$

$$g_mR_DV_{OS} = -0.5I_o \Delta R_D \quad \rightarrow \quad \frac{2I_D}{V_{OV}} R_D V_{OS} = -I_{D1} \Delta R_D$$

Input Offset Voltage

$$V_{OS} = -0.5V_{OV1} \times \frac{\Delta R_D}{R_D}$$
Method 2: Viewing V_{OS} as the bias voltage:

For: $V_{G1} = V_{G2} = 0 \Rightarrow I_{D1} = I_{D2} = 0.5I_o = 0.5\mu_n C_{ox}(W / L) V_{OV}^2$

Find: $V_{G2} = +0.5V_{os}$ and $V_{G1} = -0.5V_{os}$ such that $V_o = v_{o2} - v_{o1} = 0$

$I_{D1} = 0.5\mu_n C_{ox}(W / L) (V_{OV} - 0.5V_{OS})^2$
$\approx 0.5\mu_n C_{ox}(W / L) (V_{OV}^2 - V_{OS}V_{OV})$
$= 0.5\mu_n C_{ox}(W / L)V_{OV}^2(1-V_{OS} / V_{OV})$
$= 0.5I_o (1-V_{OS} / V_{OV})$

$I_{D2} = 0.5\mu_n C_{ox}(W / L) (V_{OV} + 0.5V_{OS})^2 \approx 0.5I_o (1+V_{OS} / V_{OV})$

$v_{o1} = v_{o2} \rightarrow V_{DD} - R_{D1} I_{D1} = V_{DD} - R_{D2} I_{D2}$

$I_{D1} R_{D1} = I_{D2} R_{D2}$

$0.5I_o R_D (1-V_{OS} / V_{OV})(1-0.5\Delta R_D / R_D) = 0.5I_o R_D (1+V_{OS} / V_{OV})(1+0.5\Delta R_D / R_D)$

$2(V_{OS} / V_{OV}) + \Delta R_D / R_D = 0 \quad \Rightarrow \quad V_{OS} = -0.5V_{OV1} \times \frac{\Delta R_D}{R_D}$
Exercise 9: Consider the circuit below with $\mu_n C_{ox} = 90 \ \mu A/V^2$, $\mu_p C_{ox} = 30 \ \mu A/V^2$, $V_{tn} = -V_{pn} = 0.7 \ V$ and $V_{An} = -V_{Ap} = 20 \ V$. The circuit is to operate such that all transistors operate at $V_{OV} = 0.5 \ V$, $I_{D1} = I_{D2} = I_{D3} = I_{D4} = I_{\text{ref}} = 0.2 \ mA$, and $(W/L)_5 = (W/L)_6$.

a) Design the circuit (i.e., find (W/L) of all transistors).

b) Find the differential gain.

c) Find the common mode response at v_{o1} (i.e., v_{o1}/v_{CM}).

d) Find the input common-mode range

e) Find the allowable range of the output voltage.

Ignore channel-width modulation in biasing calculations.
1) Q1 & Q2: PMOS Differential amplifier

2) Q5: Biasing current mirror

3) Q3 & Q4: current-source/active loads

4) Q_{ref}: The reference leg of current mirror for the circuit

5) Q6: Providing reference voltage (or current) for Q5

6) Q7: Providing \(I_{\text{ref}} \) for Q6
a) Find \((W/L)\) of all transistors

\[I_{D1} = I_{D2} = I_{D3} = I_{D4} = I_{\text{ref}} = 0.2 \text{ mA,} \]

and \((W/L)_5 = (W/L)_6\).

Step 1: Compute all currents.

\[I_{D5} = I = I_{D1} + I_{D2} = 0.4 \text{ mA} \]

\[I_{D6} = \left(\frac{W}{L}\right)_6 \times I_{D5} = 0.4 \text{ mA} \]

\[I_{D7} = I_{D6} = 0.4 \text{ mA} \]

Step 2: Compute \((W/L)\)s \((V_{ov} = 0.5 \text{ V})\)

NMOS: Qref, Q3, Q4, and Q7

\[0.2 \times 10^{-3} = I_{\text{ref}} = 0.5 \mu_n C_{ox} (W/L)_{\text{ref}} V_{OV}^2 = 0.5 \times 90 \times 10^{-6} (W/L)_{\text{ref}} (0.5)^2 \]

\[(W/L)_{\text{ref}} = 17.8 \]

\[I_{D3} = I_{D4} = I_{\text{ref}} = 0.2 \text{ mA} \Rightarrow (W/L)_3 = (W/L)_4 = (W/L)_{\text{ref}} = 17.8 \]

\[I_{D7} = 2I_{\text{ref}} = 0.4 \text{ mA} \Rightarrow (W/L)_7 = 2(W/L)_{\text{ref}} = 35.6 \]
PMOS: Q1, Q2, Q5, and Q6

\[
0.2 \times 10^{-3} = I_{D1} = 0.5 \mu p C_{ox} (W / L)_1 V_{OV}^2 = 0.5 \times 30 \times 10^{-6} (W / L)_1 (0.5)^2
\]

\[
(W / L)_1 = 53.3
\]

\[
I_{D2} = I_{D1} = 0.2 \ \text{mA} \implies (W / L)_2 = (W / L)_1 = 53.3
\]

\[
I_{D5} = I_{D6} = 2I_{D1} = 0.4 \ \text{mA} \implies (W / L)_5 = (W / L)_6 = 2(W / L)_1 = 107
\]

Small signal parameters:

\[
g_{m2} = g_{m1} = \frac{2I_{D1}}{V_{OV1}} = \frac{2 \times 0.2 \times 10^{-3}}{0.5} = 8 \times 10^{-4} \ \text{A/V}
\]

\[
r_{o2} = r_{o1} = \frac{V_{A1}}{I_{D1}} = \frac{20}{0.2 \times 10^{-3}} = 100 \ \text{k}
\]

\[
r_{o4} = r_{o3} = \frac{V_{A3}}{I_{D3}} = \frac{20}{0.2 \times 10^{-3}} = 100 \ \text{k}
\]

\[
r_{o5} = \frac{V_{A5}}{I_{D5}} = \frac{20}{0.4 \times 10^{-3}} = 50 \ \text{k}
\]
b) Find the differential gain:

\[
A_d = \frac{v_{o1,d}}{-0.5v_d} = -g_{m1}(r_{o1}||r_{o3})
\]

\[
A_d = -8 \times 10^{-4} (100k \ || 100k) = -40
\]

c) Find common mode response, \(v_{o1} \):

\[
\frac{v_{o1,c}}{v_c} = -\frac{g_{m1}r_{o3}}{1 + 2g_{m1}r_{o3} + r_{o3}/r_{o1}}
\]

\[
v_{o1,c} = -\frac{8 \times 10^{-4} \times 100 \times 10^3}{1 + 2 \times 8 \times 10^{-4} \times 50 \times 10^3 + 1}
\]

\[
v_{o2,c} = \frac{v_{o1,c}}{v_c} = -\frac{80}{1 + 80 + 1} = -0.98
\]
d) Find input common mode range:

\[V_{S1} - V_{CM} = V_{OV} + |V_{ip}| = 1.2 \text{ V} \Rightarrow V_{S1} = V_{CM} + 1.2 \]

The above equation indicates \(V_{S1} \) changes and tracks \(V_{CM} \) as \(V_{CM} \) changes. \(V_{S1} \) is limited by two criteria below:

1) Q5 in saturation:

\[V_{SD5} = 2.5 - V_{D5} \geq V_{OV} \Rightarrow V_{S1} = V_{D5} \leq 2.5 - 0.5 = 2 \text{ V} \]

2) Q1/Q3 in saturation:

\[
\begin{align*}
V_{SD1} &\geq V_{OV1} \\
V_{DS3} &\geq V_{OV3} \\
V_{SD1} + V_{DS3} &\geq V_{OV} + V_{OV} = 1 \text{ V} \\
V_{S1} - (-2.5) &\geq 1 \Rightarrow V_{S1} \geq -1.5
\end{align*}
\]

\[-2.7 \leq V_{CM} \leq 0.8 \text{ V} \]

\[-1.5 \leq V_{S1} \leq 2.0 \text{ V} \]

Note that the requirement on Q1/Q3 in saturation is usually more restrictive than above as Q1/Q3 do not usually reach saturation together (calculation above represents “the best case”). However, correct solution requires that we include channel-width modulation and calculate the relationship between \(V_{SD1} \) & \(V_{DS3} \) (same arguments apply to part e).
e) Find allowable range of output voltage:

1) Q3 in saturation:

\[V_{DS3} = v_{o1} - (-2.5) \geq V_{OV} \]
\[v_{o1} \geq -2.5 + 0.5 = -2 \text{ V} \]

2) Q1/Q5 in saturation:

\[V_{SD1} \geq V_{OV} \]
\[V_{SD5} \geq V_{OV} \]
\[V_{SD5} + V_{SD1} \geq 2V_{OV} = 1 \text{ V} \]
\[V_{SD5} + V_{SD1} = 2.5 - v_{o1} \geq 1 \]
\[v_{o1} \leq 1.5 \text{ V} \]

\[-2.0 \leq v_{o1} \leq 1.5 \text{ V} \]
Exercise 10: Consider the circuit below with $\mu_n C_{ox} = 400 \, \mu A/V^2$, $\mu_p C_{ox} = 100 \, \mu A/V^2$, and $V_{tn} = -V_{pn} = 0.4 \, V$. All transistors operate at $V_{OV} = 0.2 \, V$ and $I_{D1} = I_{D2} = I_{D3} = I_{D4} = I_{D6} = I_{ref} = 0.2 \, mA$

a) Design the circuit (i.e., find (W/L) of all transistors)

b) Find the input common-mode range

c) Find the differential gain ($\lambda = 0.2 \, V^{-1}$)
1) Q1 & Q2: NMOS Differential amplifier with single-ended output (1st stage)

2) Q6: PMOS CS amplifier (2nd stage)

3) Q5: Current-mirror bias for differential amplifier

5) Q3/Q4: asymmetric active load for differential amplifier

4) Qref: The reference leg of current mirror for the circuit

6) Q7: current-source/active load for Q6 CS amplifier

3) Q5: Current-mirror bias for differential amplifier

1) Q1 & Q2: NMOS Differential amplifier with single-ended output (1st stage)
a) Find (W/L of all transistors).

Step 1: Compute all currents.

\[
I_{D1} = I_{D2} = I_{D3} = I_{D4} = I_{D6} = I_{ref} = 0.2 \text{ mA}
\]

\[
I_{D5} = I_{D1} + I_{D2} = 0.4 \text{ mA}
\]

\[
I_{D7} = I_{D6} = 0.2 \text{ mA}
\]

**Step 2: Compute (W/L)s (\(V_{OV} = 0.2 \text{ V}\))

NMOS: Qref, Q1, Q2, and Q7 (all have same \(I_D\) and \(V_{OV}\))

\[0.2 \times 10^{-3} = I_{ref} = 0.5 \mu_n C_{ox} \frac{W}{L}_{ref} V^2_{OV} \Rightarrow \frac{W}{L}_{ref} = 25\]

\[
I_{D1} = I_{D2} = I_{D7} = I_{ref} = 0.2 \text{ mA} \Rightarrow \frac{W}{L}_1 = \frac{W}{L}_2 = \frac{W}{L}_7 = \frac{W}{L}_{ref} = 25
\]

\[
I_{D5} = 2I_{ref} = 0.4 \text{ mA} \Rightarrow \frac{W}{L}_5 = 2(\frac{W}{L}_{ref}) = 50
\]

PMOS: Q3, Q4, and Q6 (all have same \(I_D\) and \(V_{OV}\))

\[0.2 \times 10^{-3} = I_3 = 0.5 \mu_p C_{ox} \frac{W}{L}_3 V^2_{OV} \Rightarrow \frac{W}{L}_3 = 100\]

\[
I_{D3} = I_{D4} = I_{D6} = 0.2 \text{ mA} \Rightarrow \frac{W}{L}_3 = \frac{W}{L}_4 = \frac{W}{L}_6 = 100
\]
b) Find input common mode range:

\[V_{CM} - V_{S1} = V_{GS1} = V_{OV} + V_t \Rightarrow V_{S1} = V_{CM} - 0.6 \text{ V} \]

Similar to problem 9, we look at \(V_{S1} \) limits:

1) Q5 in saturation:

\[V_{DS5} = V_{D5} - (-1) \geq V_{OV} \Rightarrow V_{S1} = V_{D5} \geq 0.2 - 1 = -0.8 \text{ V} \]

2) Q1/Q3 and Q2/Q4 in saturation (because the circuit is NOT symmetric, we need to consider both cases and choose the most restrictive one).

2A) Q1/Q3

\[V_{SD3} = V_{SG3} = V_{OV3} + |V_t| = 0.6 \text{ V} \]
\[V_{SD3} = 1 - V_{D3} \Rightarrow V_{D3} = 0.4 \text{ V} = V_{D1} \]
\[V_{DS1} = V_{D1} - V_{S1} = 0.4 - V_{S1} \geq V_{OV} = 0.2 \text{ V} \]
\[V_{S1} \leq 0.2 \text{ V} \]

\[-0.8 \leq V_{S1} \leq 0.2 \text{ V} \]

2B) Q2/Q4

\[V_{SG6} = V_{OV6} + |V_t| = 0.6 \text{ V} \]
\[V_{SG6} = 1 - V_{G6} \Rightarrow V_{G6} = 0.4 \text{ V} = V_{D2} \]
\[V_{DS2} = V_{D2} - V_{S2} = 0.4 - V_{S1} \geq V_{OV} = 0.2 \text{ V} \]
\[V_{S1} \leq 0.2 \text{ V} \]

\[-0.8 \leq V_{S1} \leq 0.2 \text{ V} \]

\[-0.8 \leq V_{CM} - 0.6 \leq 0.2 \text{ V} \Rightarrow -0.2 \leq V_{CM} \leq 0.6 \text{ V} \]
c) Find the differential gain ($\lambda = 0.2 \text{ V}^{-1}$):

\[
I_{D1} = I_{D2} = I_{D3} = I_{D4} = I_{D6} = 0.2 \text{ mA}
\]

\[
I_{D5} = I_{D1} + I_{D2} = 0.4 \text{ mA}
\]

\[
I_{D6} = I_{D7} = 0.2 \text{ mA}
\]

\[
g_{m2} = g_{m1} = \frac{2I_{D1}}{V_{OV1}} = \frac{2 \times 0.2 \times 10^{-3}}{0.2} = 2 \times 10^{-3} \text{ A/V}
\]

\[
r_{o2} = r_{o1} = \frac{1}{\lambda I_{D1}} = \frac{1}{0.2 \times 0.2 \times 10^{-3}} = 25 \text{ k}
\]

\[
r_{o4} = r_{o3} = \frac{1}{\lambda I_{D3}} = \frac{1}{0.2 \times 0.2 \times 10^{-3}} = 25 \text{ k}
\]

\[
r_{o5} = \frac{1}{\lambda I_{D5}} = \frac{1}{0.2 \times 0.4 \times 10^{-3}} = 12.5 \text{ k}
\]

\[
g_{m6} = \frac{2I_{D6}}{V_{OV6}} = \frac{2 \times 0.2 \times 10^{-3}}{0.2} = 2 \times 10^{-3} \text{ A/V}
\]

\[
r_{o6} = \frac{1}{\lambda I_{D6}} = \frac{1}{0.2 \times 0.2 \times 10^{-3}} = 25 \text{ k}
\]

\[
r_{o7} = \frac{1}{\lambda I_{D7}} = \frac{1}{0.2 \times 0.2 \times 10^{-3}} = 25 \text{ k}
\]
Q1 & Q2: NMOS Differential amplifier with single-ended output (1st stage)

\[\frac{v_x}{v_d} = -g_{m1}(r_{o1} || r_{o3} || R_L) \]

\[\frac{v_x}{v_d} = -2 \times 10^{-3} (25k || 25k) = 25 \]

Q6: PMOS CS amplifier (2nd stage)

\[\frac{v_o}{v_x} = -g_{m6}(r_{o6} || r_{o7}) \]

\[\frac{v_o}{v_x} = -2 \times 10^{-3} (25k || 25k) = 25 \]

\[R_{i2} = \infty \]

\[A_d = \frac{v_o}{v_d} = \frac{v_o}{v_x} \times \frac{v_x}{v_d} = 25 \times 25 = 625 \]