THE ARIES-III

D–3He TOKAMAK REACTOR STUDY

Robert W. Conn, Farrokh Najmabadi,

and The ARIES Team

Presented at

Second Wisconsin Symposium on 3He and Fusion Power

University of Wisconsin, Madison, WI, July 19-21, 1993
ARIES Is a Community-Wide Study
Primary Objectives

- Develop self-consistent design approaches for D–3He tokamak reactors. Determine potential economic, safety, and environmental features of this class of tokamak reactors.

- Identify critical physics and technology issues for D–3He tokamak reactors.

- Identify key issues that are specific to D–3He tokamak reactors.

- Identify key areas that use of D–3He fuel has resulted in improvements in reactor performance.
Physics Requirements for D–³He Tokamak Reactors Are Demanding

- \[P_f \propto \frac{\langle \sigma v \rangle}{T^2} (\beta B^2)^2 \]

<table>
<thead>
<tr>
<th></th>
<th>DT</th>
<th>D–³He</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature (keV)</td>
<td>10–20</td>
<td>50</td>
</tr>
<tr>
<td>(\langle \sigma v \rangle/T^2) (normalized)</td>
<td>1</td>
<td>0.01</td>
</tr>
<tr>
<td>(\beta B^2) (% T^2)</td>
<td>(\geq 200)</td>
<td>(\geq 1000)</td>
</tr>
</tbody>
</table>

↓

- A D–³He reactor requires high \(\beta\), high \(B\), and high \(T\).

↓

- High \(T\) and high \(B\) result in a highly radiative plasma (synchrotron and bremsstrahlung).

↓

- Plasma power balance window is small.
The D–3He Tokamak Plasma Power Balance Is Dominated by Radiation

- High T and high B result in a highly radiative plasma:*

\[P_{brem} \propto Z_{eff} n_e^2 T_e^{1/2} \]
\[P_{syn} \propto n_e^{1/2} T_e^{5/2} B^{5/2} \sqrt{1 - R_{syn}} \]
\[R_{syn} = (1 - f_h) (1 - \sqrt{2\epsilon_o Z^* \omega_c \rho}) \]

\[f_h \equiv \text{first-wall "hole" fraction.} \]
\[\rho \equiv \text{first-wall electrical conductivity.} \]

* Fully relativistic formulas are used in actual calculations.

\[\rightarrow \text{Requires highly reflective first wall, small "hole" fraction, and stringent ash exhaust limit.} \]
The Power Balance Window for a D–3He Tokamak Plasma Is Small.
Electrical Resistivity of Some Material

![Graph showing electrical resistivity vs. temperature for different materials: SS, V15Cr5Ti, W, Be, Al, Cu. The resistivity is measured in $10^{-9} \Omega m$.](image_url)
Implications of Physics Requirements

- The small power balance window implies:

 ⋆ Highly reflective first wall and small hole fraction are required.

 First wall should be coated with Cu, Be, or W.

 ⋆ Ash exhaust limits are stringent:

 \[
 \frac{\tau_{p}^{\text{ash}}}{\tau_{E}^{\text{bulk}}} \leq 1 - 1.5 \text{ for 1st stability regime.}
 \]

 \[
 \frac{\tau_{p}^{\text{ash}}}{\tau_{E}^{\text{bulk}}} \leq 2 - 3 \text{ for 2nd stability regime.}
 \]

- Start-up in D–³He requires a large amount of auxiliary power. Start-up with a DT phase is preferred.

- Thermal stored energy in the plasma is \(\sim 10 \) times that of a DT reactor. Thermal load during a disruption is a major issue.
First Stability D–³He Tokamak Reactors Appear Unattractive

• Since $P_{syn} \propto B^{2.5}$, there is an optimum in the field (~ 21 T). High β ($\sim 10\%$) is required leading to low aspect ratio (~ 3), high current (~ 70 MA), and low bootstrap fraction ($\sim 45\%$).

• The ARIES study considered first stability D–³He reactor assuming
 * Core $\tau_{p}^{ash} / \tau_{E}^{bulk} = 1$;
 * Synchrotron current drive;
 * Solid state direct conversion of synchrotron power;
The Trade-off Among Transport, MHD, Bootstrap, and Current Drive Determines the Optimum Second-Stability Reactor

- **ARIES-III**: Second stability \((q_o = 2)\) with core \(\tau_{p}^{ash}/\tau_{E}^{bulk} = 2\).

- Requires strict profile control; high plasma temperature exclude use of FWCD leading to NBI current drive.

- Requires very high \(\beta\), therefore, low \(q_*/q_o\).

- Relax kink stability requirement:
 - \(q_o/q_* = 1/1.2\) (requires stabilization of kink modes through helical feedback coils)
 - \(\epsilon \beta_p \simeq 1.8\) leading to bootstrap overdrive
 (requires driving current in both directions).

\[\Rightarrow\] High \(\beta\) but kink unstable and large driven current (in both directions).
ARIES-III D–³He Reactor Requires Strict Plasma Profile Control

- p and j_ϕ profiles are optimized for high β at $\epsilon\beta_p \sim 1$.

- n profile is chosen to minimize bootstrap current overdrive.
The ARIES-III D–³He Tokamak Reactor
ARIES-III Major Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second Stability Operation</td>
<td></td>
</tr>
<tr>
<td>Aspect ratio</td>
<td>3.0</td>
</tr>
<tr>
<td>Plasma major radius (m)</td>
<td>7.5</td>
</tr>
<tr>
<td>Plasma minor radius (m)</td>
<td>2.5</td>
</tr>
<tr>
<td>Toroidal field on axis (T)</td>
<td>7.6</td>
</tr>
<tr>
<td>⇒ Plasma current (MA)</td>
<td>30</td>
</tr>
<tr>
<td>⇒ Toroidal beta</td>
<td>24%</td>
</tr>
<tr>
<td>Electron density (\times 10^{20} \text{ m}^{-3})</td>
<td>3.3</td>
</tr>
<tr>
<td>Ion density (\times 10^{20} \text{ m}^{-3})</td>
<td>2.1</td>
</tr>
<tr>
<td>Electron temperature (keV)</td>
<td>53</td>
</tr>
<tr>
<td>(Z_{eff})</td>
<td>2.0</td>
</tr>
<tr>
<td>Neutron wall loading (MW/m²)</td>
<td>0.1</td>
</tr>
<tr>
<td>Net electric power (MWe)</td>
<td>1000</td>
</tr>
<tr>
<td>⇒ Recirculating power fraction</td>
<td>0.24</td>
</tr>
</tbody>
</table>
The Physics Requirements of ARIES-III Are Severe

Confinement

- \(\tau_p^{ash}/\tau_E^{bulk} = 2 \ (\tau_E = 12 \text{ s}) \).

VERSUS

- Confinement enhancement \(H_{ITER-P} \approx 7.2 \)

Equilibrium & Stability

- 2nd stability operation at \(\beta = 24\% \ (C_T = 15) \).

BUT

- Feed-back stabilization of kink modes is required.

- Very precise profile control is necessary to ensure ballooning stability.
Requirements of Kink-Stabilization Feedback Coils

- Ten coils are required, each capable of carrying 1% of the plasma current (360 kA). Copper conductor in each coil is 1 cm \times 60 cm in cross section. Coils are located between the shield and the vacuum vessel.

- Coils are helical with $n = 1$ and $m = 1$ geometry.

- Coils are broken into four independently controllable toroidal segments.

- In each toroidal segment, every pair of coils are formed into saddle coils for control of the $n = 1$, $m = 1$ and $m = 2$ modes.

- There are 20 sets of electrical leads and coolant circuits. Coils interfere with access to first wall and shield and should be demountable.

\Rightarrow The maintenance-related complications arising from this coil set are severe.
Physics Features of ARIES-III

Impurity control

- Because transport power is low (H factor is assumed to be high), high-recycling divertors appear feasible.
- Peak heat flux is $\sim 5 \text{ MW/m}^2$ and $T_e < 30 \text{ eV}$.
- Target armor is 4 mm of W. Can withstand thermal load of only **one** disruption.

Fueling

- Both pellet and compact-tori injection are considered. Issues:
 - ^3He pellet production and injection.
 - CT acceleration power.
Physics Features of ARIES-III

Current drive

- Required for control of current profile for MHD stability.
- High efficiency is required.
- 6-MeV NBI for seed current (48 MW).
- 3-MeV NBI for reverse current (146 MW).
- Current drive efficiency: 0.06 A/W.
- NBI based on RFQ with system efficiency of 0.68.
- Beam-plasma reaction produces 21.6 MW of fusion power (3He beams not feasible because of 3He$^-$ source problems and low CD efficiency of 0.02 A/W).
FPC Engineering Requirements

- High reflectivity first wall to μm waves (1 to 30 THz synchrotron radiation)

- High heat flux removal capability for first wall and divertor (\sim2–3 MW/M2 on average) consistent with high temperature operation needed to achieve a high thermal conversion efficiency.

- Radiation of the bulk of the fusion power (\sim80–90%) in order to lower the divertor heat load to the same level as in a DT reactor

- Low Activation materials and coolant to permit shallow land burial of the radioactive waste.
Surface Heat Load Comparison

<table>
<thead>
<tr>
<th></th>
<th>D–T</th>
<th>D–³He</th>
<th>Ratio of D–³He/D–T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fusion Power (MW)</td>
<td>3,000</td>
<td>3,000</td>
<td>1</td>
</tr>
<tr>
<td>Neutron Power (MW)</td>
<td>2,400</td>
<td>~100</td>
<td>~0.04</td>
</tr>
<tr>
<td>Plasma Power (MW)</td>
<td>600</td>
<td>~2,900</td>
<td>~5</td>
</tr>
<tr>
<td>Nominal Radiation Fraction</td>
<td>30%</td>
<td>80%–90%</td>
<td>~3</td>
</tr>
<tr>
<td>Power to Divertor (MW)</td>
<td>420</td>
<td>300–600</td>
<td>~1</td>
</tr>
<tr>
<td>Power to First Wall as</td>
<td>180</td>
<td>2,400–2,700</td>
<td>~15</td>
</tr>
<tr>
<td>Surface Heating (MW)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Engineering Features of ARIES-III

- Low activation modified HT-9 is chosen for the shield because it produces the thinnest shield and qualifies as shallow-land burial.

- Modified HT-9 is also used for the first wall.

- Organic Coolant HB-40 (Diphenol) at relatively low pressure (2.6 MPa).

- First wall is coated by 1.45 mm of Be. Thickness is set to absorb thermal load of one disruption.

- 100 µm of W layer is used in between steel and Be to prevent interaction of Be and steel.

- Steam cycle for thermal conversion ($\eta_{th} \approx 0.44$).
An ARIES-III FPC Module
Reasons for Selection of Organic Coolant for the ARIES-III Reactor

- High heat flux on the first wall ($\sim 2.5 \text{ MW/m}^2$).
- First wall coated with Cu, Be, or W.
- He: poor heat removal capability.
- Liquid metal: activation, MHD effects.
- Water: high pressure, low thermal efficiency.
- Organic*: low pressure, high thermal efficiency.

* Reduced neutron yield for D-3He cycle reduces radiolytic decomposition and allows organic coolants to be used.
Major Parameters of the ARIES-III FPC

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coolant pressure (MPa)</td>
<td>2.6</td>
</tr>
<tr>
<td>Inlet temperature (°C)</td>
<td>350</td>
</tr>
<tr>
<td>Outlet temperature (°C)</td>
<td>425</td>
</tr>
<tr>
<td>Coolant velocity (m/s)</td>
<td>16.5</td>
</tr>
<tr>
<td>First-wall thickness (mm)</td>
<td>0.6</td>
</tr>
<tr>
<td>Max. first wall temperature (°C)</td>
<td>545</td>
</tr>
<tr>
<td>Max. Be temperature (°C)</td>
<td>630</td>
</tr>
<tr>
<td>Outboard shield thickness (m)</td>
<td>0.8</td>
</tr>
<tr>
<td>Max. Shield temperature (°C)</td>
<td>500</td>
</tr>
</tbody>
</table>
Details of ARIES-III Blanket Design
Details of ARIES-III First Wall Design
ARIES-III Magnets Are Based on Near-Term Technology

- $B_{\text{coil}} = 14 \text{ T.}$
- Use of a ferritic shield results in ferromagnetic reduction of ripple.
- 20 shell-like coils with large out-of-plane strength. Support caps to handle fault conditions.
- High-strength structural alloy (700 MPa), high-strength stabilizer, and demountable cryostats.
- Large energy margin in the innermost turns to absorb nuclear heating of the DT start-up.
- PF coils have similar conductor and structure.
- PF coil design is driven by the need to provide and maintain plasma current during the start-up.
- Pulsed losses in the TF and PF system due to helical feed-back control coils need to be determined.
Safety and Waste Disposal Features of ARIES-III Are Very Attractive

- Compared to DT, D–³He fuel results in 1/20 of neutron power, \(\sim 1/10\) of afterheat, and 1/4 the activation for comparable structure.

- After 30 full power years of operation, shield qualifies as class-A waste after a 25-year cool down period.

- ARIES-III produces 11 g of tritium per day which is reinjected and burned in the reactor.

- Activation of coolant is negligible but disposal of the decomposed coolant is an issue.

- ARIES-III is passively safe.

- Significant safety credits for COE are possible.
Very Low Activation Material is the KEY to Achieving Potential Attractive Features of Fusion

Critical Dose at 1 km (rem)
First Wall, Blanket, and shield

* From S. K. HO, U.C. Berkeley
Principal Results of ARIES-III Study

- Realization of D–^3^He tokamak reactors requires major advances in physics.

 ★ First-stability D–^3^He power plants appear impractical.

 ★ Second-stability plants require operation at very high β and plasma is kink unstable.

 ★ Considerably better energy confinement (high H factor), very low $\tau_p^{ash}/\tau_E^{bulk}$ or efficient active ash pumping, a means of plasma fueling, and efficient current drive are required.

- A parallel path to achieving the attractive safety and environmental features of fusion is the development of very-low-activation material for D–T reactors.
Principal Results of ARIES-III Study

- The engineering of the first wall and divertor is difficult:
 - High surface heat flux,
 - High reflectivity for µm waves (1-30 THz synchrotron radiation),
 - High thermal load of a disruption.

- Use of D–³He fuel results in simplification of the fusion power core (no breeding blanket).

- The radiation-damage lifetime of the first wall and shield is longer than the plant lifetime.

- Magnets can be located closer to the plasma.

- Low-pressure, high thermal efficiency organic coolant can be used because of low neutron yield of D–³He cycle.

- The reactor is passively safe and waste materials qualify for shallow-land burial under the U.S. Code of Federal Regulations.