ARIES Systems Activities*

- ARIES-NS ('Non-Electric') Neutron Source
 - drafted "Interim Report" section (12/99)
 - additional amplification/explanation required

- ARIES-AT ($A = 4, \beta_N = 5.6, 6.0, 6.8$)
 - Physics Discussion cases posted (02/04)
 - Series A posted (02/29) $R_T = \text{var, } j_{PFC} = 40\text{MA/m}^2$
 - Series B posted (03/01) Z_{eff} increased, core f_{rad} increased
 - Series C posted (03/10) $R_T = 5.2m, j_{PFC} = 45\text{MA/m}^2$

- ARIES Systems Code (ASC)
 - largely back on the tracks
 - still limping w/o graphics
 - rfCD scalings $f(T_e, Z_{eff})$
 - radial/vertical builds are up to date
 - TFC(HTSC) and PFC options need attention
 - cost update† (in progress)

- Socio-economics of fusion
 - new Task 7 adopted by IEA ESE-ExComm
 - Workshop at UCSD

* since last Project Meeting (12/99).
ARIES-AT Physics Basis*

<table>
<thead>
<tr>
<th>Case</th>
<th>A</th>
<th>B †</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normalized beta †, (\beta_N)</td>
<td>5.59</td>
<td>6.04</td>
<td>6.81</td>
</tr>
<tr>
<td>Plasma vertical elongation, (\kappa)</td>
<td>2.14</td>
<td>2.14</td>
<td>2.14</td>
</tr>
<tr>
<td>Plasma triangularity, (\delta)</td>
<td>0.78</td>
<td>0.78</td>
<td>0.78</td>
</tr>
<tr>
<td>Toroidal beta †, (\beta) (%)</td>
<td>9.34</td>
<td>10.17</td>
<td>11.76</td>
</tr>
<tr>
<td>Toroidal beta ‡, (\beta) (%)</td>
<td>8.40</td>
<td>9.15</td>
<td>10.59</td>
</tr>
<tr>
<td>Poloidal beta, (\beta_p)</td>
<td>2.10</td>
<td>1.90</td>
<td>2.47</td>
</tr>
<tr>
<td>Edge density ratio ‡, (n_s/n)</td>
<td>0.28</td>
<td>0.27</td>
<td>0.24</td>
</tr>
<tr>
<td>Bootstrap-current fraction, (f_{bc})</td>
<td>0.941</td>
<td>0.945</td>
<td>0.908</td>
</tr>
<tr>
<td>Safety factor, (q(0))</td>
<td>3.69</td>
<td>3.56</td>
<td>3.56</td>
</tr>
<tr>
<td>Safety factor, (q(a))</td>
<td>3.97</td>
<td>4.05</td>
<td>3.94</td>
</tr>
</tbody>
</table>

* C. Kessel (PPPL): Aspect ratio, \(A \equiv R_T/a_p = 4.0 \)
‡ Baseline Strawman selected 21 March 2000
† Not including disruption-avoidance margin (0.9)
○ Assumes \(n_s/n_0 = 0.20 \)
ARIES-AT Fusion Power Core*

- $A = 4.0, \kappa = 2.2, \beta_N = 5.6, 6.0, 6.8^*$
- rf CD per T. K. Mau, pending NBCD (for rotation)
- Underutilized TFC ($B_c \simeq 12T$), pending...
 - possible size reduction
 - possible higher net power output, P_E
- initial PFC cf. ARIES-RS may inhibit smaller FPC size

* MAPPER/DISSPLA figure-processing assistance of C. Bathke is acknowledged.
ARIES-AT Systems (Interim) Conclusions

- **ARIES-AT** \((A = 4.0) \)
 - **Physics:**
 - Three E/S cases at \(\beta_N = 5.6, 6.0, 6.8 \)
 - Corresponding rf CD scaling, \(f(T_e, Z_{eff}) \)
 - Interim emphasis on \(\beta_N = 6.0, [Q_E, COE] \)
 - Need NBCD scaling
 - PFC interference affecting access to small FPC (?)
 - **Engineering:**
 - Is HTS needed/beneficial for TFC and/or PFC?
 - up-to-date radial/vertical builds
 - high efficiency power cycle [added cost?]
 - plant capacity factor, \(p_f \approx 0.76 \), pending RAM analysis (forced and scheduled outages)

- Low-cost fabrication cost credits
- Trade-offs and sensitivity parametrics
- ASC cost model update/upgrade (in progress)