THE IMPACT OF OFF-NORMAL SHOTS ON IFE POWER PLANT PERFORMANCE

D. Steiner
Rensselaer Polytechnic Institute

ARIES Project Meeting
UCSD
December 5-7, 2000
PROPOSED APPROACH AND OBJECTIVES OF THIS STUDY

• Develop as complete a list as possible of target and driver preparation and delivery requirements for the ARIES combinations of drivers and targets

• Establish uncertainty and reproducibility parameters and distributions for these requirements

• Perform statistical analyses to develop probability distributions for various shot outcomes

• Examine the impact of these shot outcomes on the performance of IFE power plant
TO ADDRESS THIS ISSUE, THE OFF-NORMAL WORKING GROUP HAS BEEN ESTABLISHED

Dan Goodin
Debbie Callahan Miller
Ron Miller
John Perkins
Bob Peterson
Dave Petti
John Sethian
Don Steiner
Mark Tillack
Simon Yu
OFF-NORMAL SHOTS WITH REDUCED YIELD

- Due to small variations in target fabrication and driver characteristics and delivery

- Yield output 10 - 90% below normal shot

- Output spectra differ from those of normal shots

- Such shots could be studied using BUCKY/LASNEX codes

- Such shots should not compromise IFE performance but would have to be accommodated for in the chamber wall design
OFF-NORMAL SHOTS WITH ZERO YIELD

- Driver “misses” target and irradiates chamber wall while target strikes chamber wall
- Target is injected but driver does not fire and target strikes chamber wall
- Symmetric driver energy absorbed by target without ignition and driver energy appears as target debris kinetic energy
- Asymmetric driver energy absorbed by target, accelerating target towards chamber wall
- The first and fourth types of shot appear to present the greatest challenge to IFE performance
OBSERVATIONS

- Establishing reliability and tolerance data for target and driver performance is certainly speculative at this point.

- However, given the stringent requirements and the goal of ~ 500,000 shots per day, one would expect a non-negligible number of off-normal shots per day.

- Of particular concern are target/driver misses and asymmetric zero-yield shots which may damage chamber wall components.
PROPOSED ACTION ITEMS

• Try to get a better handle on the frequency of the various off-normal shots

• Analyze the spectral characteristics of the reduced yield shots and the associated impact on chamber wall design

• Analyze the impact of the zero yield shots on chamber wall design