UW Blanket Activity

L. El-Guebaly, E. Mogahed, I. Sviatoslavsky, J. Santarius
Fusion Technology Institute
University of Wisconsin - Madison

ARIES Project E-Meeting
16 March 1999
UCSD
Contents

• High performance FW/blanket design with SiC/SiC structure:
 – FW design characteristics
 – Blanket design characteristics
 – Design issues

• Breeding capacity of LiPb and LiSn breeders

• Sensitivity of breeding to amount of SiC structure

• Expected overall TBR and Mn for SiC system
Average OB heat flux 0.7 - 1 MW/m²

max OB NWL 7 - 10 MW/m²

max SiC/SiC temp. 1100 – 1400 °C

Breeder exit temp. ~ 1000 °C

SiC/SiC thermal conductivity 20 – 30 W/mk

FW location at midplane – IB, OB 3.5, 6 m

Top/bottom FW radii – IB, OB 3.5, 4 m
FW Design Characteristics

- FW design is still evolving

- FW consists of array of bundles overlapped toroidally to intercept surface heat flux

- Horizontal cross sections at midplane (R = 6 m) and at top/bottom ends (R = 4 m) are shown in Figs. 1 and 2

- Single FW bundle (shown in Fig. 3) consists of set of twisted tubes surrounding a straight central tube

- Breeder flows poloidally in SiC/SiC tubes.

- Tube wall is 0.3 cm thick and breeder tube diameter is 1 cm

- Number of tubes and dimensions will be optimized later

- Plasma facing FW surface needs protective coating. Few mm of SiC (or Be) coating could be sprayed on FW in factory or in-situ

- FW design is also applicable to divertor system
Fig. 1. IB or OB FIRST WALL AT MIDPLANE

Diameter = \(D \)

\(L = \frac{3}{2} D \)
Fig. 2 OB FIRST WALL AT TOP/BOTTOM
Fig. 3 Bundle of Twisted Tubes

- Straight Central Tube
- Pitch $> 6D$
- Poloidal Direction
- Plasma
Blanket Design Characteristics

- Blanket design is at an early stage of development

- Currently investigating two blanket options:

 - Breeder flowing poloidally in square cells
 (similar to ARIES-ST and Tauro designs)

 - Stagnant breeder pool with:
 - large bubbling of helium for tritium extraction
 - coolant flowing in SiC channels for heat removal.

- No decision has been made yet on preferred option.
FW/Blanket Design Issues

Expected values

- Heat flux handling capacity > 1 MW/m²
- Thermal conversion efficiency 50 – 60%
- Max temp. of SiC/SiC structure 1400 °C
- Max. temp. of breeder 1000 °C
- Optimum FW composition/dimension
- FW spray coating: SiC or Be
- FW outgasing
- Manifolding and attachments
- Accommodation of Kink stabilizing shell
- Blanket segmentation
- Flowing or stagnant breeder in blanket
- Compatibility of breeder with SiC at high temp.
- SiC content in blanket 10 - 20%
- IB blanket thickness 20 - 50 cm
- OB blanket thickness 50 - 80 cm
- Breeding capacity of candidate breeders
- Others?
Li25Sn75 has lower breeding potential than Li17Pb83

LiPb and LiSn with natural Li have TBR of 1.6 and 0.5, respectively

FW/Blanket structure, penetrations, and geometry will degrade overall TBR to 1.1 or less
Breeding Capacity of LiPb and LiSn in Realistic Design

- **Starting dimension/composition:**
 - 20 cm thick IB blanket and 50 cm thick OB blanket (ARIES-RS type blanket)
 - 15% SiC structure in blanket
 - 90% enriched Li
 - 5 cm thick FW (2 cm SiC, 3 cm LiPb)

- No breeding blanket behind divertor

- Breeder-cooled divertor and HT shield

- Required TBR = 1.1

- Results:

<table>
<thead>
<tr>
<th>Breeder/structure</th>
<th>LiPb/SiC</th>
<th>LiSn/SiC</th>
<th>Li/V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(85/15)</td>
<td>(85/15)</td>
<td>(90/10)</td>
</tr>
<tr>
<td>Overall TBR</td>
<td>1.07</td>
<td>0.85</td>
<td>1.1</td>
</tr>
</tbody>
</table>

- To increase TBR:
 - Thicken blanket
 - Reduce SiC content in blanket
 - Reduce SiC content in FW
TBR of LiPb/SiC and LiSn/SiC Blankets

- **LiPb/SiC** blanket satisfies breeding requirements with:
 - 40 cm thick LiPb/SiC IB blanket
 - 50 cm thick LiPb/SiC OB blanket
 - 15% SiC structure in blanket
 - 5 cm thick LiPb/SiC FW

- **LiPb/SiC** blanket has ~5% excess breeding capability

- **LiSn/SiC** blanket does not meet breeding requirements. Thick blankets increase TBR to ~0.9:
 - 40 cm thick LiSn/SiC IB blanket
 - 70 cm thick LiSn/SiC OB blanket
 - 15% SiC structure in blanket
 - 5 cm thick LiSn/SiC FW
If design calls for more (or less) SiC content than 15% in blanket, LiPb/SiC blanket thickness will be used to adjust TBR to 1.1.

LiSn/SiC blanket without SiC structure has TBR of 0.95.
Sensitivity of TBR to SiC Content in FW

- SiC of FW has larger impact on breeding than SiC of blanket
- Each mm of FW SiC changes TBR by ~1%
- Lower SiC content in FW allows thinner OB LiPb/SiC blanket than 50 cm and/or higher SiC structure in blanket than 15%
- LiSn/SiC blanket will not breed unless SiC in BOTH FW and blanket is reduced to 1 cm.
- Is 1 cm SiC structure sufficient to support 40-70 cm thick LiSn blanket?
Conclusions

- Proposed FW/blanket design potentially offers high heat flux handling capability and high thermal conversion efficiency

- LiPb/SiC blanket satisfy breeding requirements (TBR = 1.1) with excess breeding capability

- LiSn/SiC will not meet breeding requirements unless SiC structure is limited to 1 cm or less in both FW and blanket

- Beryllium multiplier could enhance breeding potential of LiSn/SiC blanket

- Overall Mn will not exceed 1.1 for both breeders, meaning larger machine than ARIES-RS (Mn = 1.2) for same net output power.