IFE Materials Response

Z Machine Materials Studies

November 14, 2001

Tina J. Tanaka, Greg Rochau, Tim Renk, Craig Olson (SNL), Tim Knowles (ESLI), Per Peterson (UCB), and Robert Peterson (UW)
Outline

• Z machine
• Debris Issues
• Multipurpose radiation box (MPR)
• Methods of analysis
• Samples exposed and analyzed
 – W
 – Poco graphite
 – LiF
 – Honeycomb collimator
• Future Work
Z Machine

• Capabilities
 – 65 J/cm² of X rays in 20 ns
 (in present location)
 – Black body Temp.
 ~(200 eV)
• Availability
 – 1 shot per day
 – Piggy back mode
• Limitations
 – Only on shots when allowed
 – Depends on space available
 – Z machine needs to be in right configuration
 – Debris from target area must be mitigated
Debris Issues

• Z machine generates many X rays, but also debris from molten target material
• Fast valves may be an option, but only on occasional shots
• The MPRS box has significantly reduced the debris, but cannot eliminate it.

No collimation-20 µm debris

With collimation-1 µm
Multipurpose Radiation Box (MPR)

- Stainless steel box
- Inner slide with filter and additional apertures
- Collimation
Methods of analysis

• Surface Profiling
 – Mechanical-Dektak
 – Optical-WYKO

• Scanning Electron Microscopy
 – Flat and cross sectioned samples
 – Measure debris depth of cross section samples
 – Elemental analysis

• Time-of-Flight Mass Spectroscopy
 – Depth profiling of debris
Proposed and tested samples on Z

<table>
<thead>
<tr>
<th>Material</th>
<th>Fluence</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graphite (Poco)</td>
<td>7 J/cm²</td>
<td>Dry wall</td>
</tr>
<tr>
<td>Tungsten</td>
<td>~ 7 J/cm²</td>
<td>Dry wall</td>
</tr>
<tr>
<td>LiF</td>
<td>42 J/cm²</td>
<td>Wetted wall surrogate</td>
</tr>
<tr>
<td>Carbon velvet</td>
<td>~ 42 J/cm²</td>
<td>Dry wall</td>
</tr>
<tr>
<td>Silicon Carbide</td>
<td></td>
<td>Dry wall</td>
</tr>
<tr>
<td>Carbon Composite</td>
<td></td>
<td>Dry Wall</td>
</tr>
<tr>
<td>Silicon wafer</td>
<td></td>
<td>Reference material</td>
</tr>
<tr>
<td>Aluminum</td>
<td></td>
<td>Reference material</td>
</tr>
<tr>
<td>FLiBe</td>
<td></td>
<td>Wetted wall</td>
</tr>
</tbody>
</table>

Note: FLiBe is an acronym for Fluorine-Lithium-Beryllium.
Tungsten

W sample shows pitting, but the surface level is approximately level. Filtered sample.
Poco Graphite

- Poco graphite, polished
 - Exposed in MPR box
 - 2 micron Kimfol + 100Å Al Filter
- Debris layer consists of Fe, Ni, Cu, Al
- No significant level change from ablation, instead 1-2 µm pits developed

SEM shows 1 µm debris
Lithium Fluoride as a FLiBe substitute

- LiF vacuum windows
 - Exposed in MPR box
 - No filters, only collimation
- Measured 3 micron step between original level and exposed region
- Flat ridge of LiF formed around edge of exposed region

Height profile
Carbon velvet and honeycomb collimator

- Honeycomb collimator of Celcor
 - 1mm openings, 25 mm long
 - Aspect ratio similar to MPR box
- Material tested both collimated and open exposures on Z
 - 2 densities of carbon velvet
 - Carbon mirror
 - Epoxy coated Al
- Results
 - Much more velvet left on sample behind collimator
 - Little debris behind collimator
 - Honeycomb pattern on all samples behind collimator
Future Work

- Adjust flux levels to determine threshold levels
- Test more materials
- How best to analyze carbon velvet and carbon composite materials?
- Fielding molten samples
- Start up web site