OVERVIEW OF U.S. FUSION SiC/SiC ACTIVITIES

R.H. Jones
Pacific Northwest National Laboratory
Richland, WA 99352

International Town Meeting on SiC/SiC Design and Material Issues for Fusion Systems
January 18-19, 2000
Oak Ridge National Laboratory
OVERVIEW OF U.S. FUSION SiC/SiC ACTIVITIES

- Fiber properties
 - strength of advanced fibers
 - radiation effects on dimensional change, thermal conductivity, strength.
 - irradiation creep
- Thermal conductivity
 - in situ measurements: TRIST-TC1
 - thermal conductivity vs T: fibers
 - irradiation effects on fibers and composite
OVERVIEW OF U.S. FUSION SiC/SiC ACTIVITIES

- Materials development
 - composites with advanced fibers: Hi-NicS, tyranno SA, MER beta SiC fibers/crystalline matrix.
 - interface development.
 - high thermal conductivity: z stitched C fibers.
- Properties of composites
 - radiation effects on dimensional stability, thermal conductivity and strength.
 - uniaxial, 2-d and 3-d fiber orientations
- Materials Joining
OVERVIEW OF U.S. FUSION SiC/SiC ACTIVITIES

- Irradiation experiments
 - HFIR:
 + monolithic SiC, fibers, advanced composites
 + in-core- 12J: 500 C, 14J: 800 C, a few dpa
 + rabbit positions: 600-1500 C, void swelling, etc
 - ATR: fiber creep with KAPL
 - HFR: with Petten
 - He implant studies: with ISPRA and JUPITER prog.
OVERVIEW OF U.S. FUSION SiC/SiC ACTIVITIES

Collaborations

- JUPITER: all aspects
- JRC-Ispra: fiber creep, He implantation
- Petten: irradiations
- IEA
 + workshops
 + collaborative experiments