Modeling of Inertial Fusion Chamber

A. R. Raffray, F. Najmabadi, Z. Dragojlovic, J. Pulsifer
University of California, San Diego

US/Japan Workshop on Power Plant Studies and related Advanced Technologies
San Diego
April 6-7, 2002
Why We Need Chamber Modeling

• Key IFE chamber uncertainty is whether or not the chamber environment will return to a sufficiently quiescent and clean low-pressure state following a target explosion to allow a second shot to be initiated within 100–200 ms
 - Target and driver requirement on chamber conditions prior to each shot

• Chamber condition following a shot in an actual chamber geometry is not well understood
 - Dependent on multiple processes and variables
 - A predictive capability in this area requires a combination of computer simulation of increasing sophistication together with simulation experiments to ensure that all relevant phenomena are taken into account and to benchmark the calculations

• The proposed modeling effort includes:
 - Scoping calculations to determine key processes to be included in the code
 - Development of main hydrodynamic code
 - Development of wall interaction module
Chamber Dynamics

Cavity Gas, Target, and Wall Species

Time of flight to wall:
X-rays ~20 ns
Neutrons ~100 ns
Alphas ~400 ns
Fast Ions ~1 µs
Slow Ions ~1-10 µs

- Photon transport & energy deposition
- Ion transport & energy deposition
- Heating & ionization
- Radiation
- Gas dynamics (shock, convective flow, large gradients, viscous dissipation)
- Condensation
- Conduction
- Cavity clearing

Timescale: ns to 100 ms

Chamber Wall Interaction

- Photon energy deposition
- Ion energy deposition
- Neutron & α energy deposition
- Conduction
- Melting
- Vaporization
- Sputtering
- Thermo-mechanics/ macroscopic erosion
- Radiation damage
- Blistering (from bubbles of implanted gas)
- Desorption or other degassing process

Timescale: ns to 100 ms

Coolant

- Convection & cooling
 Timescale: ms
Scoping Calculations Were First Performed to Assess Importance of Different Effects and Conditions

• **Chamber Gas**
 – At high temperature (> ~ 1 ev), radiation from ionized gas can be effective
 – In the lower temperature range (~ 5000K back to preshot conditions)
 • Conduction (neutrals and some electrons)
 • Convection
 • Radiation from neutrals
 • Other processes?
 – The temperature of the gas might not equilibrate with the wall temperature
 • May have implications for target injection
Effectiveness of Conduction Heat Transfer to Cool Chamber Gas to Preshot Conditions

- Simple transient conduction equation for a sphere containing gas with an isothermal boundary condition (T_w)
 - k_{Xe} is poor (~0.015 W/m-K at 1000K, and ~0.043 W/m-K at 5000 K)
 - At higher temperature electron conductivity of ionized gas in chamber will help
 (assumed ~ 0.1 W/m-K for $n_e = n_o$ and 10,000 K)
 - Argon better conducting gas

- T decreases from 5000K to 2000K in ~2 s for $k_g = 0.03$ W/m-K

- Even if k_g is increased to 0.1 W/m-K, it does not help much (~ 0.6 s)

Temperature History Based on Conduction from 50 mTorr Gas in a 5 m Chamber to a 1000K Wall

April 6-7, 2002
A. R. Raffray, et al., Modeling of Inertial Fusion Chamber
Effectiveness of **Convection** Heat Transfer to Cool Chamber Gas to Preshot Conditions

- Simple convection estimate based on flow on a flat surface with the fluid at uniform temperature
- Use Xe fluid properties
- Assume sonic velocity
 - $c \approx 500 \text{ m/s}$
 - $Re \approx 700$ for $L = 1 \text{ m}$
 - $Nu \approx 13$
 - $h \approx 0.4 \text{ W/m}^2\text{-K}$
- Lower velocity would result in lower h but local eddies would help
 - Set h between 0.1 and 1 W/m2-K representing an example range
- T decreases from 5000K to 2000K, in ~0.1 s for $h = 0.4 \text{ W/m}^2\text{-K}$
- Increasing h to 1 W/m2-K helps but any reduction in h rapidly worsens the situation (e.g. ~0.4 s for 0.1 W/m2-K)
Effectiveness of **Radiation Heat Transfer to Cool Chamber Gas from Mid-level Temperature (~5000K) to Preshot Conditions**

- Xe is monoatomic and has poor radiation properties
 - Complete radiation model quite complex
 - Simple engineering estimate for scoping calculations
 - No emissivity data found for Xe
 - Simple conservative estimate for Xe using CO$_2$ radiation data

- T decreases from 5000K to 2000K, in ~1 s
 (would be worse for actual Xe radiation properties)

\[q_r'' = \sigma \varepsilon_w (\varepsilon_g T_g^4 - \alpha_g T_w^4) \]

Temperature History Based on Radiation from 50 mTorr Gas in a 5 m Chamber to a 1000K Wall

For CO$_2$ at 2000 K, $\varepsilon_g \sim 10^{-5}$

$\alpha_g \sim \varepsilon_g$ at T_w (1000 K); $\alpha_g \sim 10^{-4}$
Effectiveness of Heat Transfer Processes to Cool Chamber Gas (Xe) to Preshot Conditions is Poor

Conservative estimate of Xe temperature (K) following heat transfer from 5000K

<table>
<thead>
<tr>
<th>Time:</th>
<th>0.1 s</th>
<th>0.2 s</th>
<th>0.5s</th>
<th>~1 s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conduction:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>k=0.03 W/m-K</td>
<td>4700</td>
<td>4500</td>
<td>3600</td>
<td>2700</td>
</tr>
<tr>
<td>k=0.1 W/m-K</td>
<td>3900</td>
<td>3200</td>
<td>2200</td>
<td>1500</td>
</tr>
<tr>
<td>Convection:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h=0.1 W/m²-K</td>
<td>3800</td>
<td>3000</td>
<td>1650</td>
<td>1200</td>
</tr>
<tr>
<td>h=0.4 W/m²-K</td>
<td>1950</td>
<td>1220</td>
<td>~1000</td>
<td>~1000</td>
</tr>
<tr>
<td>h=1 W/m²-K</td>
<td>1250</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xe Radiation: (assum. CO₂ ε and α)</td>
<td>3500</td>
<td>2850</td>
<td>2300</td>
<td>2200</td>
</tr>
</tbody>
</table>

• It seems that only possibility is convection with high velocity and small length scales (optimistic requiring enhancement mechanisms) and/or appreciable gas inventory change per shot (by pumping)

• Background plasma in the chamber might help in enhancing heat transfer (e.g. electron heat conduction, recombination)
Chamber Physics Modeling

- **Energy Equations**
 - Condensation
 - Radiation transport
- **Momentum Conservation Equations**
 - Pressure (T)
 - Viscous dissipation
 - Wall momentum transfer (impulse)
- **Mass Conservation Equations**
 - Condensation
 - Aerosol formation
 - Evaporation
 - Sputtering
 - Other mass transfer
 - Condensation
- **Phase change**
 - Energy deposition
- **Convection**
 - Pressure (T)
- **Conduction**
 - Thermal capacity
- **Thermal stress**
 - Thermal shock
 - Stress/strain analysis
- **Evacuation**
- Source
- Chamber Region
- Wall Region

Driver beams

Energy input

Momentum input

Mass input

UCSD

April 6-7, 2002
A. R. Raffray, et al., Modeling of Inertial Fusion Chamber
Numerical Modeling of IFE Chamber Gas Dynamics

- **Build Navier-Stokes solver for compressible viscous flow**
 - Second order Godunov algorithm.
 - Riemann solver used as a form of upwinding.
- Progressive approach
 - 1-D --> 2-D
 - inviscid --> viscous flow
 - rectangular geometry --> 2-D and 3-D arbitrary geometry (to be done)
 - grid splitting into sub-domains for multi-geometry modeling

- **Perform code verification**
 - 1-D and 2-D acoustic wave propagation
 - Conservation laws
Example Case to Illustrate Code Capability: Square Chamber Cavity With a Rectangular Beam Channel – Centered Initial Disturbance

- Inviscid flow
- Initial pressure and density disturbance centered, zero velocity field
- Reflective wall boundary conditions
- Ambient Xe \((T = 800K, \rho = 1.3028 \times 10^{-4} \text{ kg/m}^3, p = 7.857 \text{ Pa})\)
Comparison Between Viscous and Inviscid Flow for Example Xe Case

Inviscid

\[v_{\text{max}} = 0.0975 \, \text{m/s} \]
\[p_{\text{max}} = 7.86 \, \text{Pa} \]
\[\rho_{\text{max}} = 1.3032 \times 10^{-4} \, \text{kg/m}^3 \]

The effect of viscosity is significant.

Viscous

\[v_{\text{max}} = 0.0078 \, \text{m/s} \]
\[p_{\text{max}} = 7.8573 \, \text{Pa} \]
\[\rho_{\text{max}} = 1.3035 \times 10^{-4} \, \text{kg/m}^3 \]
Wall Interaction Module Development

- Ion and photon energy deposition calculations based on spectra
 - Photon attenuation based on total photon attenuation coefficient in material
 - Use of SRIM tabulated data for ion stopping power as a function of energy
- Transient Thermal Model
 - 1-D geometry with temperature-dependent properties
 - Melting included by step increase in enthalpy at MP
 - Evaporation included based on equilibrium data as a function of surface temperature and corresponding vapor pressure
 - For C, sublimation based on latest recommendation from Philipps
- Model calibrated and example cases run
- To be linked to gas dynamic code
Other Erosion Processes to be Added (ANL)

- Scoping analysis performed
 - Vaporization, physical sputtering, chemical sputtering, radiation enhanced sublimation

These results indicate need to include RES and chemical sputtering for C (both increase with temperature)

Physical sputtering relatively less important for both C and W for minimally attenuated ions (does not vary with temperature and peaks at ion energies of ~ 1keV)

Plots illustrating relative importance of erosion mechanisms for C and W for 154 MJ NRL DD target spectra
Chamber radius = 6.5 m.
Example Cases Run for 154 MJ NRL Direct Drive Target Spectra

Photons

Fast Ions

Debris Ions
Spatial Profile of Volumetric Energy Deposition in C and W for Direct Drive Target Spectra

- Tabulated data from SRIM for ion stopping power used as input

Energy Deposition as a Function of Penetration Depth for 154 MJ NRL DD Target

Energy Deposition as a Function of Penetration Depth for 401 MJ NRL DD Target

C density = 2000 kg/m³
W density = 19,350 kg/m³
Spatial and Temporal Heat Generation Profiles in C and W for 154MJ Direct Drive Target Spectra

Temporal and Spatial Profile of Ion Power Deposition in C Armor from 154 MJ DD Target Spectrum

Temporal and Spatial Profile of Ion Power Deposition in W Armor from 154 MJ DD Target Spectrum

Assumption of estimating time from center of chamber at \(t = 0 \) is reasonable based on discussion with J. Perkins and J. Latkowski
Temperature History of C and W Armor Subject to 154MJ Direct Drive Target Spectra with No Protective Gas

- Initial photon temperature peak is dependent on photon spread time (sub-ns)

- For a case without protective gas and with a 500°C wall temperature:
 - C $T_{\text{max}} < 2000^\circ$C
 - W $T_{\text{max}} < 3000^\circ$C
 - Some margin for adjustment of parameters such as target yield, chamber size, coolant temperature and gas pressure
Future Effort Will Focus on Model Improvement and on Exercising the Code (1)

• Exercise code:
 - Investigate effectiveness of convection for cooling the chamber gas
 - Assess effect of penetrations on the chamber gas behavior including interaction with mirrors
 - Investigate armor mass transfer from one part of the chamber to another including to mirror
 - Assess different buffer gas instead of Xe
 - Assess chamber clearing (exhaust) to identify range of desirable base pressures
 - Assess experimental tests that can be performed in simulation experiments

• Improve Code
 - Extend the capability of the code (full inclusion of multi-species capability)
 - Implement adaptive mesh routines for cases with high transient gradients and start implementation if necessary
 - Implement aerosol formation and transport models (INEEL)
 - Implement more sophisticated mass transport models in wall interaction module (ANL)