Reactor constraints FI targets

Rich Stephens
General Atomics

Performance
Construction
Delivery
Compression
Ignition

Cost

US/Japan Target Fab Workshop 2003
General Atomics, 3-4 Feb ‘03
FI target design strongly affects reactor design

- **Construction**
 - Factory complexity
 - Inventory, especially of tritium
- **Delivery to TCC**
 - Temperature and pressure limitations on reactor chamber
- **Compression**
 - Flexibility in driver location, quality of drive beams
- **Ignition**
 - Short pulse limitations on chamber pressure
Target factory for central hot spot targets doesn’t seem appropriate for asymmetric FI targets

- **Construction complexity causes problems:**
 - × Using surface tension for shell shape
 - × Beta-layering for ice
 - ? Cool assembled target

- **FI targets have new concerns**
 - Robust joint between reentrant cone and shell
 - Uniform ice layers
 - Contamination from cone
 - Minimize hot spot
Molding ice layers might solve these problems

- **Molding allows more freedom**
 - Not dependent on isotherm geometry
 - Not restricted to high temperatures

- **Several approaches possible**
 - Stamp out and join hemishells
 - Injection mold and freeze in place
 (use foam for opacity adjustment)
 - Capillary fill of low density foam

Ref S.A. Slutz “Fast Ignition capsules using liquid fuel”

Can molded surface meet surface smoothness specs?
There are advantages in direct molding of targets

- Avoids stresses from cooling
- Avoids diffusive fill and beta-layering
- Avoids vapor transport (unsuitable for asymmetric FI targets)
- Avoids tight temp controls
- Allows longer heatup time on injection
 - ~5X more heat input allowed than for central hot spot target
Mold contamination might be tolerable?

- **Low density core will contain debris from initial structure**
 - Inner wall partially vaporizes when shock wave crosses
 - Cone surface vaporizes from high energy hohlraum spectrum

- **That contamination is largely irrelevant**
 - Reentrant cone geometry ejects such debris (inner mold surface might be a problem)
 - Fast Ignition doesn’t burn low density volume

- **Must worry about mixing of low density core with dense shell**
 - Thin RT unstable shells used to eliminate low density core would be sensitive to these impurities
Targets requirements limit reactor conditions

- NRL direct drive target has gold coating to reject radiation heat
 - Assumes 98% reflectivity
 - Requires limits on reactor wall (and gas) temperature
- Chamber gas pressure limited to reduce heating and drag

Cold FI target relaxes reactor constraints
A FI cone is an advantage in delivery

- The cone decreases total and asymmetric frictional heating

- The added mass reduces target deceleration
 - Direct & Indirect drive targets about the same mass
Direct or Indirect Drive? - Preference not clear

- Direct Drive puts more constraints on reactor
 - Drive symmetry more stringent
 - Laser drivers must be distributed over more of reactor wall? (using flat-topped beams, can get modest uniformity on NIF 26% p-v - is that sufficient for FI?)
 - Target not so robust
 - Reactor wall must be cooler, gas pressure lower
 - Target surface must be highly reflective or highly transmissive
 - Debris problems worse
 - Cone must be long and heavy (Hogan J/US FI WS)
- But Indirect drive is not great improvement
 - Can already tolerate drive asymmetry
 - Cold shell can already tolerate much more heating
 - Hohlraum losses reduce potential gain
Reentrant cone is critical for Compression & Ignition dynamics

- Compact compressed fuel
- Guide laser
- Create electrons near compressed fuel
- Minimize work done on compressed gas
- Minimize contamination from cone
Should design cone to meet multiple concerns

- Thermal layering?
 - Set up proper isotherms

- Mechanical integrity and maintain shape
 - Must not allow shell distortion on cooling (perhaps compliant foam shell would be best)

- Efficient collapse
 - Minimize PdV work on gas

Collapse ejects gas toward cone

dense glide plane

Central gas exhaust

closed pore foam for insulation and flex
Cone purposes (cont.)

- Exclude plasma
 - Need high cone density only near outside
 - Longer than blow-off distance

- Focus laser? (outer region of cone)
 - Winston concentrator is most efficient optics
 - Must remain effective for ~30 ps

- Produce electrons (inner region of cone)
 - Gold is efficient
 - What thickness? (survive ~30 ps)
Cone purposes (cont.)

- Guide electrons to shell
 - Is side wall shape important?"
 - Hollow tip cone eliminates interfacial problems?
 (but that puts a jet of gas down the center of the cone)
Using flat outer “cone” makes construction simpler

- Hemishells easy to make:
 - Stamped in one piece - no seams
 - Molded as in SNL concept
- Minimize
- Flat sheet outer cone is simple
- Inner cone can be molded of plastic, inner metal reflective coating
Fast Ignition targets present opportunities

- Complex to make but construction shortcuts
- Thermal layering is difficult but low temperatures feasible
- Minimize mixing but relax symmetries
- Cone massive but protects during injection

But we can’t yet evaluate the tradeoffs