Target Tracking at Gifu University

Hiroki Yoshida
Gifu University, Japan

Second US/Japan Workshop on
Target Fabrication, Injection and Tracking

Feb. 2-3, 2002
General Atomics, San Diego, CA
Outline

- Summary and conclusion
- Conceptual design of tracking apparatus
- Direct imaging on CCD arrays
- Matched filter
Summery and conclusion

- Detectors have to provide noise reduction in tracking apparatus.

- The direct imaging on CCD arrays is constructed. In the preliminary evaluation, its accuracy is $< 10 \, \mu\text{m}$ for a stationary target.

- The matched filter will be one of candidates. By the simulation, it has improved performance on S/N and detect ability of target rotation angle.
Conceptual design of tracking apparatus

Aerosol will scatter and absorb probe light

\[
\begin{align*}
\phi, \tau, \ldots, \phi, \tau, \\
&x, y, z, \ldots, t, \phi \\
&\dot{x}, \dot{y}, \dot{z}, \\
&x, y, z
\end{align*}
\]

1. Direct imaging on CCD arrays
2. Matched filter
Direct imaging on two CCD arrays

The PMB image is sampled by 500ns pulse. Position x is determined by:

$$x = \frac{w}{M} \left(\frac{\text{Count}_1 - \text{Count}_2}{2} \right)$$

Count_1: Cell number of CCD$_1$
Count_2: Cell number of CCD$_2$

CCD: TCD1023, 1024 cells

$w=14 \mu m$: Cell width

$M=3$: Magnification

Gifu Univ.
Preliminary evaluation of direct imaging

CCD$_2$ output vol. v (V) vs. x_{CCD} (mm)

CCD$_1$ output vol. v (V) vs. x_{CCD} (mm)

$Count_2 = 151$

$Count_1 = 84$

$x = -150 \mu m$

$r = 3.0 \text{ mm}$

Detected x (µm) vs. Target position x (µm)

$x = -500$ to 500

$y = -500$ to 500

$I = 100$ to 200

$V = 8.0$ to 9.0

t (µs) = 0 to 200

CCD output vol.

CCD output vol.

Gifu Univ.
Matched Filter is well developed as a pattern reorganization method.

Matching a matched filter:

\[
g(x, y) \star \text{Filter}(X, Y) = g(x, y) \times \text{Filter}(X, Y)
\]
Original image and matched filter

Org. image

Matched Filter

Gifu Univ.
Input image and correlation output of a cone-target

Input image

Corr. output

Gifu Univ.
Correlation output can be obtained from noisy signal

Input image

Corr. output

Gifu Univ.
Position is detected from correlation output

Input image

Corr. output

$\Delta z = -2.0 \text{ mm}$ $\Delta z = 0 \text{ mm}$ $\Delta z = 2.0 \text{ mm}$
Correlation output is weakly sensitive to rotation

Input image

Corr. output

(0 deg.) (-5 deg.) (-10 deg.) (-15 deg.)
Correlation output is a function of rotation angle ϕ. The correlation $f \star g$ is plotted against rotation angle ϕ in degrees. The graph shows a peak at $\phi = 0$ and decreases as ϕ increases in either direction.
Rotation angle detection by two matched filters

Matched filter ($\phi=5$ deg)

Matched filter ($\phi=-5$ deg)

Photo sensor (PSD, CCD)

Gifu Univ.
Rotation angle is obtained from difference of two correlation outputs.

Rotation Angle ϕ [deg]

Corr$_+$, Corr$_-$, Corr$_+$ - Corr$_-$ [a.u.]