Use of Polyimide in IFE Target Components

Chuck Gibson
Luxel Corporation
www.luxel.com

2nd US/Japan Workshop on Target Fabrication, Injection and Tracking
February 3-4, 2003
Polyimide Film

- Polyimide consists of a large class of aromatic polymers
 - Made by polymerizing a dianhydride and a diamine
 - \(C_{22}H_{10}N_2O_4 \)
- Commercially available polyimide:
 - Films
 - Kapton® (Dupont)
 - Upilex® (UBE Industries)
 - Apical® (Kaneka (was Allied Signal))
 - Bulk
 - Vespel® (Dupont)
Advantages of Polyimide for IFE Targets

• High Strength
 – Luxel Polyimide $\sigma_u \geq 310 \text{ MPa}$
 – Dupont Kapton® Polyimide $\sigma_u \geq 231 \text{ Mpa}$
 – Mylar $\sigma_u \geq 100 \text{ MPa}$
 – Formvar $\sigma_u \geq 60 \text{ MPa}$
 – Polycarbonate (Lexan) $\sigma_u \geq 60 \text{ MPa}$
 – Parylene N $\sigma_u \geq 60 \text{ Mpa}$

 – Strength Measured by Mechanical and Burst Tests:
Advantages of Polyimide Film for Targets (con’t)

- **Large Temperature Range**
 - Used in applications from 1.8K to 400ºC

- **High Radiation Resistance**
 - Gamma Radiation at Savannah River
 - Tests performed on Dupont Kapton®

<table>
<thead>
<tr>
<th></th>
<th>0 Gy</th>
<th>10^5 Gy</th>
<th>10^6 Gy</th>
<th>10^7 Gy</th>
<th>10^8 Gy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile (MPa)</td>
<td>207</td>
<td>207</td>
<td>214</td>
<td>214</td>
<td>152</td>
</tr>
<tr>
<td>Elongation (%)</td>
<td>80</td>
<td>78</td>
<td>78</td>
<td>79</td>
<td>42</td>
</tr>
<tr>
<td>Modulus (MPa)</td>
<td>3170</td>
<td>3280</td>
<td>3380</td>
<td>3280</td>
<td>2900</td>
</tr>
</tbody>
</table>

- Similar Results for Neutron, Electron, and UV Radiation
Possible Polyimide Components

Heavy Ion Driven Target

- Capsule
- Entrance Window
- Anti-Convection Baffles
- Capsule Support
Polyimide Capsules

• Various Fabrication Methods
 – Vapor Deposited on Mandrels
 • Lawrence Livermore National Lab
 • University of Rochester
 • General Atomics
 – Solution Deposited on Mandrel (Thick Wall)
 • Luxel
 • Solution Deposited Using Ink-Jet
 – Direct Formation Using Bubble (Thin Wall)
 • Luxel
 • Bubble Cured while Acoustically Levitated
Entrance Windows

- Polyimide is Currently used for ICF Hohlraum Entrance Windows
 - NOVA
 - NIF
 - CEA
- Gas Bags Use Polyimide Windows
 - Film is 3500Å Thick
 - 1atm Internal Pressure
- Luxel Routinely Spin-Casts Polyimide Film from 300 to 20,000Å
Optimization of Strength at Cryogenic Temps

- Recently Completed a Project to Optimize the Burst Strength of Polyimide Windows at Cryogenic Temperature
 - Windows From 450 to 9115Å thick
 - Testing at 300K, 77K and 4.2K
 - Optimized Cure Cycle Resulted in Average Burst Strength Increase of 36%
 - Allows Thinner Windows or Higher Internal Pressure
Anti-Convection Baffles

- IFE Hohlraums May Require Anti-Convection Baffles
 - Convection Cells Set Up in Gas
 - Destroy Symmetry Required for Beta Layering
- Current NIF Design Includes Four 1000Å thick Polyimide Baffles
Capsule Supports

- **Current NIF Capsule Supports use Formvar Films**
 - However, DT Filled Capsules Cause the Films to Fail
 - Polyimide is Very Radiation Resistant

- **Heavy Ion Driven Target Capsule Supports**
 - Baseline Assembly Technique is Cryogenic Assembly
 - Shape Required is Too Severe for Flat Film
 - Luxel has Submitted a SBIR Proposal to Develop IFE Capsule Support Mass-Production Methods
Possible Polyimide Components
Z-Pinch Driven Target
Gas Tight Membrane

- Z-Pinch IFE Target Membrane Requirements:
 - Right Circular Cylinder
 - Ultra Thin
 - Leak Tight
 - Low Emissivity
 - High Thermal Conductivity

- Luxel Currently has SBIR Grant to Develop Mass-Production Methods
Summary

• Polyimide’s Unique Properties Offer Many Advantages to IFE Target Designers:
 – Ultra Thin Films
 – High Strength
 – High Radiation Resistance
 – Excellent Cryogenic Properties

• Polyimide Is Available in Many Forms:
 – Thin Films
 – Shapes(spheres, hemis, cylinders)
 – Conformal Coatings