Hydrodynamics of Liquid Protection schemes for IFE Reactor Chambers

S. I. Abdel-Khalik and M. Yoda

IAEA Meeting - Vienna (November 2003)

G. W. Woodruff School of Mechanical Engineering
Atlanta, GA 30332–0405 USA
OUTLINE

• Introduction – Problem Definition
 ▪ Description of Liquid Protection Concept

• The Wetted Wall Concept
 ▪ Numerical Studies
 ▪ Experimental Verification

• Forced Liquid Film Concept

• Thick Oscillating Slab Jets (HYLIFE) Concept
Prometheus: 0.5 mm thick layer of liquid lead injected normally through porous SiC structure
Prometheus: Few mm thick Pb “forced film” injected tangentially at >7 m/s over upper endcap

~ 5 m

Injection Point

First Wall

Detachment Distance x_d

Forced Film

X-rays and Ions
Turbulent Liquid Sheets

HYLIFE-II: Use slab jets or liquid sheets to shield IFE chamber first walls from neutrons, X-rays and charged particles.

- Oscillating sheets create protective pocket to shield chamber side walls
- Lattice of stationary sheets (or cylindrical jets) shield front/back walls while allowing beam propagation and target injection

Pictures courtesy P.F. Peterson, UCB
Thin Liquid Protection

Major Design Questions

- Can a stable liquid film be maintained over the entire surface of the reactor cavity?

- Can the film be re-established over the entire cavity surface prior to the next target explosion?

- Can a minimum film thickness be maintained to provide adequate protection over subsequent target explosions?

Study wetted wall/forced film concepts over “worst case” of downward-facing surfaces
Numerical Simulation of Porous Wetted Walls

Summary of Results

Quantify effects of

- injection velocity w_{in}
- initial film thickness z_o
- Initial perturbation geometry & mode number
- inclination angle θ
- Evaporation & Condensation at the interface

on

- Droplet detachment time
- Equivalent droplet diameter
- Minimum film thickness prior to detachment

Obtain Generalized Charts for dependent variables as functions of the Governing non-dimensional parameters
Numerical Simulation of Porous Wetted Walls
Effect of Evaporation/Condensation at Interface

- \(z_0^* = 0.1 \), \(w_{in}^* = 0.01 \), Re=2000

\[
\begin{align*}
& m_f^+ = -0.005 \\
& \tau^* = 31.35 \\
& \text{(Evaporation)}
\end{align*}
\]
\[
\begin{align*}
& m_f^+ = 0.0 \\
& \tau^* = 27.69
\end{align*}
\]
\[
\begin{align*}
& m_f^+ = 0.01 \\
& \tau^* = 25.90 \\
& \text{(Condensation)}
\end{align*}
\]
Numerical Simulation of Porous Wetted Walls

Wetted Wall Parameters

- Length, velocity, and time scales:
 \[
 l = \sqrt{\frac{\sigma}{g(\rho_L - \rho_G)}} \quad U_0 = \sqrt{gl} \quad t_0 = \frac{l}{U_0}
 \]

- Nondimensional drop detachment time:
 \[
 \tau^* \equiv \frac{t_d}{t_0}
 \]

- Nondimensional minimum film thickness:
 \[
 \delta^*_{\text{min}} \equiv \frac{\delta_{\text{min}}}{l}
 \]

- Nondimensional initial film thickness:
 \[
 z^*_o \equiv \frac{z_o}{l}
 \]

- Nondimensional injection velocity:
 \[
 w^*_\text{in} \equiv \frac{w_{\text{in}}}{U_0}
 \]
Experimental Validations

1 Constant-head supply tank w/var. height
2 Perforated tube
3 Shut off valve
4 Test section porous plate, 316L SS
5 Sump pump
6 Sub-micron filter
7 Fast stirrer
8 Unistrut frame
9 Air relief valve
10 Baffles
11 Porous plate plenum
Experimental Variables

- Plate porosity
- Plate inclination angle θ
- Differential pressure
- Fluid properties

Independent Parameters

- Injection velocity, w_{in}
- “Unperturbed” film thickness, z_0

Dependent Variables

- Detachment time
- Detachment diameter
- Maximum penetration depth
Experiment #W090 --

Evolution of Maximum Penetration Distance

![Graph showing the evolution of maximum penetration distance over time.](image)
Wetted Wall Summary

- Developed general non-dimensional charts applicable to a wide variety of candidate coolants and operating conditions

- Stability of liquid film imposes
 - Lower bound on repetition rate (or upper bound on time between shots) to avoid liquid dripping into reactor cavity between shots
 - Lower bound on liquid injection velocity to maintain minimum film thickness over entire reactor cavity required to provide adequate protection over subsequent fusion events

- Model Predictions are closely matched by Experimental Data
Forced Film Concept

Problem Definition

Prometheus: Few mm thick Pb “forced film” injected tangentially at >7 m/s over upper endcap

~ 5 m

Injection Point

First Wall

Detachment Distance x_d

Forced Film

X-rays and Ions
Forced Film Parameters

- Weber number We
 - Liquid density ρ
 - Liquid-gas surface tension σ
 - Initial film thickness δ
 - Average injection speed U

\[
We \equiv \frac{\rho U^2 \delta}{\sigma}
\]

- Froude number Fr
 - Surface orientation θ ($\theta = 0^\circ \Rightarrow$ horizontal surface)

\[
Fr \equiv \frac{U}{\sqrt{g(\cos \theta)\delta}}
\]

- Mean detachment length from injection point x_d
- Mean lateral extent W
- Surface radius of curvature $R = 5$ m
- Surface wettability: liquid-solid contact angle α_{LS}
- In Prometheus: for $\theta = 0 - 45^\circ$, $Fr = 100 - 680$ over nonwetting surface ($\alpha_{LS} = 90^\circ$)

Contact Angle, α_{LS}

<table>
<thead>
<tr>
<th>Material</th>
<th>Contact Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glass</td>
<td>25°</td>
</tr>
<tr>
<td>Coated Glass</td>
<td>85°</td>
</tr>
<tr>
<td>Stainless Steel</td>
<td>50°</td>
</tr>
<tr>
<td>Plexiglas</td>
<td>75°</td>
</tr>
</tbody>
</table>
Experimental Apparatus

A Flat or Curved plate (1.52 × 0.40 m)
B Liquid film
C Splash guard
D Trough (1250 L)
E Pump inlet w/ filter
F Pump
G Flowmeter
H Flow metering valve
I Long-radius elbow
J Flexible connector
K Flow straightener
L Film nozzle
M Support frame
Experimental Parameters

• Independent Variables
 - Film nozzle exit dimension $\delta = 0.1–0.2$ cm
 - Film nozzle exit average speed $U_0 = 1.9 – 11.4$ m/s
 - Jet injection angle $\theta = 0^\circ$, 10°, 30° and 45°
 - Surface inclination angle α ($\alpha = \theta$)
 - Surface curvature (flat or 5m radius)
 - Surface material (wettability)

• Dependent Variables
 - Film width and thickness $W(x)$, $t(x)$
 - Detachment distance x_d
 - Location for drop formation on free surface
Detachment Distance

1 mm nozzle
8 GPM
10.1 m/s
10° inclination
Re = 9200
Detachment Distance Vs. Weber Number

\[\theta = 0^\circ \]
\[\delta = 1 \text{ mm} \]

- Glass (\(\alpha_{LS}=25^\circ\))
- Stainless Steel (\(\alpha_{LS}=50^\circ\))
- Plexiglas (\(\alpha_{LS}=75^\circ\))
- Rain-X® coated glass (\(\alpha_{LS}=85^\circ\))
Penetrations and Beam Ports

• Cylindrical obstructions modeling protective dams around penetrations and beam ports incompatible with forced films

• Film either detaches from, or flows over, dam
Forced Film Summary

- Design windows for streamwise (longitudinal) spacing of injection/coolant removal slots to maintain attached protective film
 - Detachment length increases with Weber and Froude numbers

- Wetting chamber first wall surface requires fewer injection slots than nonwetting surface \Rightarrow wetting surface more desirable

- Cylindrical protective dams around chamber penetrations incompatible with effective forced film protection
 - “Hydrodynamically tailored” protective dam shapes may also fail
HYLIFE-II: Use slab jets or liquid sheets to shield IFE chamber first walls from neutrons, X-rays and charged particles.

- Oscillating sheets create protective pocket to shield chamber side walls
- Lattice of stationary sheets (or cylindrical jets) shield front/back walls while allowing beam propagation and target injection

Pictures courtesy P.F. Peterson, UCB
Major Design Questions

• Is it possible to create “smooth” prototypical turbulent liquid sheets?
 - 5 mm clearance between driver beam, sheet free surface in protective lattice ⇒ > 30 year lifetime for final focus magnets

• Can adjacent sheets, once they collide, separate and re-establish themselves before the next fusion event?

• Can the flow be re-established prior to the next fusion event?
 - Chamber clearing
 - Hydrodynamic source term – Beam propagation requirements
Flow Loop

- Pump-driven recirculating flow loop
- Test section height ~1 m
- Overall height ~5.5 m

A Pump B Bypass line
C Flow meter D Pressure gage
E Flow straightener
F Nozzle G Oscillator (Not used)
H Sheet I 400 gal tank
J Butterfly valve K 700 gal tank
Flow Conditioning

- Round inlet (12.7 cm ID) to rectangular cross-section 10 cm × 3 cm (y × z)
- Perforated plate (PP)
 - Open area ratio 50% with staggered 4.8 mm dia. holes
- Honeycomb (HC)
 - 3.2 mm dia. × 25.4 mm staggered circular cells
- Fine mesh screen (FS)
 - Open area ratio 37.1%
 - 0.33 mm dia. wires woven w/ open cell width of 0.51 mm (mesh size 30 × 30)
- 5th order contracting nozzle
 - Contraction ratio = 3
- Note: No BL trimming
Experimental Parameters

- $\delta = 1 \text{ cm}; \text{ aspect ratio } AR = 10$
- Reynolds number $Re = 130,000$ [U_0 average speed; ν liquid kinematic viscosity]
- Weber number $We = 19,000$ [ρ_L liquid density; σ surface tension]
- Froude number $Fr = 1,400$
- Fluid density ratio $\rho_L / \rho_G = 850$ [ρ_G gas density]
- Near-field: $x / \delta \leq 25$
Surface Ripple Measurements

- Free surface \Rightarrow interface between fluorescing water and air
 - Planar laser-induced fluorescence (PLIF)
- Free surface found w/edge detection
 - Threshold individual images
- $\sigma_z =$ standard deviation of free surface z-position spatially averaged over central 7.5 cm of flow
Surface Ripple: Nozzle H

- σ_z measure of average surface ripple
- $\sigma_z/\delta < 4.3\%$ for $x/\delta < 25$
- σ_z essentially independent of Re
- $\sigma_z \uparrow$ slightly as $x \uparrow$

![Graph showing σ_z/δ vs. x/δ for different Re values (25,000, 50,000, 97,000).]
Turbulent Breakup

- **Turbulent primary breakup**
 - Formation of droplets along free surface: “hydrodynamic source term”
 - Due to vorticity imparted at nozzle exit

- **Onset of breakup, x_i**
 - Location of first observable droplets
 - $x_i \downarrow$ as Weber number $We \uparrow$
Total droplet mass ejection rate ≈ 1300 kg/s

- Assumes $G(x = 1 \text{ m})$ over entire surface area of each respective jet (Mean value of predictions)
- $\sim 3\%$ of total jet mass flow rate

Sauter mean dia. ≈ 5.7 mm for all jets at $x = 1 \text{ m}$

- SMD at $x_i \approx 0.82 - 1.0$ mm for $d = 4.61 - 15.6$ cm, respectively
Implications for Beam Propagation

- Droplets enter into beam footprint

- Radial standoff, Δr_s
 - Measured from nominal jet surface

- Equivalent number density dependent on x and Δr_s
 - Ignores jet-jet interactions
Implications for Typical RPD-2002 Jet: \(d = 4.61 \) cm (Row 0)

- Normalized effective density, \(\frac{\rho_{\text{eff}}}{\rho_{\text{FLIBE}}} \)
- Equivalent average number density, \(N \) (\# / m\(^3\))
- Radial standoff distance, \(\Delta r_s \) (mm)

Graph showing trends with different standoff distances:
- \(x = 0.5 \) m
- \(x = 1 \) m
- \(x = 1.5 \) m
- \(x = 2 \) m

Beam / jet standoff distance
Beam Propagation Implications

• Model predictions imply protection concept is incompatible with beam propagation requirements

• However, model is based on:
 ▪ Fully developed turbulent pipe flow at exit
 ▪ No flow conditioning, nozzle or BL cutting

• Can nozzles / jets be designed to reduce these number densities to a level compatible with beam propagation requirements?
Boundary Layer Cutter

- “Cut” (remove BL fluid) on one side of liquid sheet

- Independently control:
 - Cut depth, Δz_{cut}
 - Downstream location of cut, x

- Removed liquid (~0.18 kg/s) diverted to side
Cutter Details

• Aluminum blade inserted into flow
 ▪ Remove high vorticity / low momentum fluid near nozzle wall
 ▪ Blade face tilted 0.4° from vertical
 ▪ Blade width (y-extent) 12 cm

• Relatively short reattachment length
 ▪ Nozzle contraction length 63 mm
Mass Collection Procedure

- Cuvette opening = 1 cm × 1 cm w/0.9 mm wall thickness

- Five adjacent cuvettes
 - Cuvette #3 centered at y = 0

- Located at x, Δzs away from nominal jet position
 - Δzs ≅ 2.5–15 mm
 - Experiments repeated to determine uncertainty in data

- Mass collected over 0.5–1 hr
Experimental Number Density

\(x / \delta = 25 \)

Equivalent average number density, \(N \) (# / m\(^3\))

Cuvette standoff distance, \(\Delta z_s \) (mm)

Standard Design
No Fine Mesh
Closed – No cutting
Open – 0.25 mm cut
Summary: Mass Collection

- Flow straightening and contracting nozzle significantly reduce ejected droplet mass (by 3–5 orders of magnitude) compared w/model

- BL cutting has considerable impact on collected droplet mass

- BUT: proper flow conditioning more important

- Flow conditioning and BL cutting reduce collected droplet mass by orders of magnitude (compared with model predictions)
Conclusions

- Hydrodynamic source term sensitive to initial conditions
- Jet geometry, surface ripple and breakup affected by flow conditioning
- Flow conditioning / converging nozzle reduces droplet mass flux (and number density) by 3–5 orders of magnitude over model predictions
- BL cutting appears to eliminate droplet ejection for a “well-conditioned” jet
- Preventing blockage of fine mesh screens major issue
Acknowledgements

Georgia Tech

- **Academic Faculty**: Damir Juric and Minami Yoda
- **Research Faculty**: D. Sadowski and S. Shin

DOE

- W. Dove, G. Nardella, A. Opdenaker

ARIES-IFE Team

LLNL/ICREST

- W. Meier, R. Moir