DPSSL Systems:
The Next Generation

US-Japan Workshop
on Laser IFE
San Diego
March 21-22, 2005

Presented by
Ray Beach

This work was performed under the auspices of the U. S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.
A solid-state laser for IFE must exhibit certain properties

• Technical laser requirements
 – Energy/power to drive target
 – Beam conditioning
 – Efficiency \Rightarrow optical-optical efficiency > 0.2
 – ASE $\Rightarrow \alpha \cdot \ell < 4.5$
 – Beam filamentation $\Rightarrow \delta B < 1.8$

• IFE - specific constraints
 – Cost
 – Rep rate
 – RAM

Challenge – What is the gain medium?
How did we come to use Yb:S-FAP for a DPSSL?

- In the early 1990’s, the primary concern was minimizing the number of costly diode arrays
- New Yb$^{3+}$-doped materials were selected for long (1 msec) storage lifetimes and other desirable properties
Mercury (and other) laser systems have rapidly advanced laser - diode technology

- Monolithic package has driven down cost
- Mercury diode bar cost - $1.30/W_{peak}

- Diode cost will continue to drop
 - Advanced manufacturing technologies
 - Performance improvements
 - Expanding market: DoD, laser machining,…

- 80 kW_{peak} Mercury arrays can scale to 10’s of MW
Diode - bar prices are dropping with growing market volume

- Cost data follows a classic “learning curve”
- Every doubling of quantity cuts the cost 41%

Laser diodes will eventually become affordable for IFE
Challenge – What should be the next-generation gain medium?

- Yb$^{3+}$:S-FAP — special crystal, carefully chosen

- Nd$^{3+}$:Glass — tailored phosphate glass, produced in large volumes at low cost

- Optical (transparent) ceramics — hybrid, combines technical and chemical-engineering advantages

Down-selection is a multi-dimensional problem involving numerous cost, performance, and engineering issues
Yb$^{3+}$:S-FAP — an apatite-structure crystal demonstrated on the Mercury system

- **Strength**
 - Yb$^{3+}$ ion has a long storage lifetime (~1 msec,) minimizing diode-array count

- **Weaknesses**
 - Development is being driven by only one program – Mercury
 - Limited aperture sizes (Mercury is 3 cm x 5 cm), but may be enlarged by crystal bonding (stitching)
 - Quasi-three level laser (at room temperature)
Nd³⁺:Glass — used in many generations of fusion lasers

Strengths
- Large apertures (NIF slabs are 40 cm x 70 cm)
- Production capability is well established
- Four-level laser (at RT)

Weaknesses
- Nd³⁺ lifetime only 0.36 msec (3x more diodes than Yb³⁺)
- Low thermal conductivity (~0.0058 W/cm·°C, about 4x less than Yb:S-FAP)
Optical ceramics have arrived!

10 x 10 x 2 cm Nd:YAG ceramic slabs

- Ceramic media sizes scale like glass
- Optical quality is comparable to that of NIF glass

100°K Yb3+:YAG ceramic is a potential large-aperture medium for a four-level IFE DPSSL driver

Today’s slabs are generally smaller than those needed for IFE

- Today
 - 3 x 5 cm²
 - 10 x 10 cm²
 - 13 x 20 cm²
 - Nd:Glass 40 x 70 cm²

- IFE
 - 17x Yb:S-FAP
 - 28x Yb:YAG ceramic
 - 40 x 70 cm²

Only Nd:Glass is at the required IFE slab size
We are embarking on a cost analysis of candidate DPSSL systems for IFE

Comparison of Yb:S-FAP, Nd:Glass, and Yb:YAG (ceramic) - based IFE drive lasers:

- Nd:Glass - based system
 - Traceable to NIF beam line
 - Leverages technology base developed for NIF: large optic finishing, beam-line bundling, switchyard, and LRUs

- Yb:S-FAP - based system
 - Traceable to Mercury architecture, but using a NIF-like configuration
 - Leverages design of Mercury amplifiers

- Yb - doped optical ceramics
 - Scale like glass but has long storage time
 - Replace NIF glass slabs with Yb:YAG ceramic
 - Require large-scale cryo-cooling
Comparison (size and number) of beam lines suggests that cryogenic Yb:YAG has the smallest “footprint”

Nd:Glass
- 40 cm x 40 cm aperture
- 4 beam lines per port
- 192 total beam lines

Yb:S-FAP
- 13 cm x 20 cm aperture
- 32 beam lines per port
- 1536 total beam lines

Yb:YAG ceramic
- 40 cm x 40 cm aperture
- 8 beam lines per port
- 384 total beam lines
Diode - pumped Nd:Glass head with He cooling

- Multiple - thin - slab architecture is required for thermal management
 - Center slabs are 1.43 cm thick
 - Outer slabs are 0.72 cm thick
- Heat intensity at all interior - slab surfaces is 0.92 W/cm²
Facility comparison

Yb:S-FAP facility
1536 beam lines

Nd:Glass facility
192 beam lines
“End – on” comparison of aperture areas (for half of the beam lines)

- Nd:Glass
- Yb:YAG ceramic
- S-FAP
Comparison of rare-earth absorption features: linewdths set tolerances on pump-diode wavelengths

Spectrally-resolved absorption cross sections (normalized)

<table>
<thead>
<tr>
<th>Material</th>
<th>Linewidth (FWHM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yb:YAG 100 K</td>
<td>15 nm</td>
</tr>
<tr>
<td>Yb:YAG RT</td>
<td></td>
</tr>
<tr>
<td>Nd:Glass</td>
<td>12.5 nm</td>
</tr>
<tr>
<td>Yb:S-FAP</td>
<td>3.4 nm</td>
</tr>
</tbody>
</table>

Lower-cost diodes
Changes involved in converting a NIF beam line to 10 Hz operation

<table>
<thead>
<tr>
<th>NIF technology</th>
<th>Beam line upgrade (10 Hz operation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flashlamps</td>
<td>Diode arrays</td>
</tr>
<tr>
<td>4.3 cm thick Nd:Glass slabs</td>
<td>• Thinner Nd:Glass slabs</td>
</tr>
<tr>
<td></td>
<td>• Yb:YAG ceramic slabs</td>
</tr>
<tr>
<td></td>
<td>• Mercury-like Yb:S-FAP amplifier heads</td>
</tr>
<tr>
<td>KDP PEPC</td>
<td>KD*P PEPC</td>
</tr>
<tr>
<td>Air slab cooling</td>
<td>He cooling</td>
</tr>
<tr>
<td>KDP harmonic generation</td>
<td>KD*P harmonic generation</td>
</tr>
</tbody>
</table>
Salient features of three candidate solid-state laser systems for IFE

Baselined systems are each 4 MJ$_{1\omega}$ with \geq 20% optical-optical efficiency

<table>
<thead>
<tr>
<th></th>
<th>Yb:S-FAP</th>
<th>Nd:Glass</th>
<th>Yb:YAG (100$^\circ$K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain medium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laser type</td>
<td>Quasi-three level</td>
<td>Four level</td>
<td>Four level</td>
</tr>
<tr>
<td>Storage time</td>
<td>1 ms</td>
<td>0.36 ms</td>
<td>1 ms</td>
</tr>
<tr>
<td>Peak diode pump power</td>
<td>20 GW</td>
<td>56 GW</td>
<td>20 GW</td>
</tr>
<tr>
<td>Absorption FWHM</td>
<td>3.4 nm</td>
<td>12.5 nm</td>
<td>15 nm</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>Room Temperature</td>
<td>Room Temperature</td>
<td>100 K</td>
</tr>
<tr>
<td>Aperture size</td>
<td>13 cm x 20 cm (near - normal incidence)</td>
<td>40 cm x 40 cm (Brewster)</td>
<td>40 cm x 40 cm (Brewster)</td>
</tr>
<tr>
<td>Number of beam lines</td>
<td>1536</td>
<td>192</td>
<td>384</td>
</tr>
<tr>
<td>Total number of slabs</td>
<td>21,504</td>
<td>10,368</td>
<td>1,536 – 23,040</td>
</tr>
<tr>
<td>Total aperture area</td>
<td>40 m2</td>
<td>31 m2</td>
<td>61 m2</td>
</tr>
</tbody>
</table>
Heat-removal tradeoffs of the three systems

Waste heat is assumed dumped at room temperature

<table>
<thead>
<tr>
<th>Gain medium</th>
<th>Yb:S-FAP</th>
<th>Nd:Glass</th>
<th>Yb:YAG (100 K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_{\text{thermal from diodes and operating temperature}}$</td>
<td>133 MW 268 K</td>
<td>133 MW 268 K</td>
<td>133 MW 268 K</td>
</tr>
<tr>
<td>$\frac{P_{\text{req for cooling}}}{P_{\text{thermal}}} = 2.5 \left(\frac{T_a - T_c}{T_c} \right)^{4/3}$</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
</tr>
<tr>
<td>Quantum defect</td>
<td>0.13</td>
<td>0.23</td>
<td>0.09</td>
</tr>
<tr>
<td>$P_{\text{thermal from laser slabs and operating temperature}}$</td>
<td>23 MW 268 K</td>
<td>42 MW 268 K</td>
<td>16 MW 100 K</td>
</tr>
<tr>
<td>$\frac{P_{\text{req for cooling}}}{P_{\text{thermal}}} = 2.5 \left(\frac{T_a - T_c}{T_c} \right)^{4/3}$</td>
<td>0.11</td>
<td>0.11</td>
<td>6</td>
</tr>
<tr>
<td>Power required for thermal management</td>
<td>17.2 MW</td>
<td>19.3 MW</td>
<td>111 MW</td>
</tr>
<tr>
<td>Gain medium</td>
<td>Yb:S-FAP</td>
<td>Nd:Glass</td>
<td>Yb:YAG ceramic</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------</td>
<td>----------</td>
<td>----------------</td>
</tr>
<tr>
<td>Diodes</td>
<td>😊</td>
<td>😞</td>
<td>😊</td>
</tr>
<tr>
<td>Gain Media</td>
<td>😞 😐 😞</td>
<td>😊 😊 😐</td>
<td>😊 😊 😐</td>
</tr>
<tr>
<td>Cooling</td>
<td>😊</td>
<td>😊</td>
<td>😞</td>
</tr>
</tbody>
</table>

We’re still deciding!
Together, NIF and Mercury technologies enable demonstration of a DPSSL - based IFE beam line.