CONTRIBUTING AUTHORS

University of California, San Diego
Farrokh Najmabadi Mark S. Tillack Ronald L. Miller
Tak-Kuen Mau BongJu Lee1 Xueren Wang

Argonne National Laboratory
Dai-Kai Sze Michael Billone David A. Ehst

Boeing
Lester M. Waganer

General Atomics
Clement P. C. Wong Thomas Dunn Fred A. Silady
Robert Schleicher

Idaho National Engineering Laboratory
J. Stephen Herring Gayle Cadwallader Thomas J. Dolan

Los Alamos National Laboratory
Charles G. Bathke

Massachusetts Institute of Technology
Leslie Bromberg Alexei L. Radovinsky Michael Sidorov
Peter Titus2

Princeton Plasma Physics Laboratory
Stephen C. Jardin Charles E. Kessel, Jr.

Raytheon Engineers & Constructors
Gregory Hofer

Rensselaer Polytechnic Institute
Don Steiner

University of Wisconsin
Laila A. El-Guebaly Igor N. Sviatoslavsky James P. Blanchard
Hesham Y. Khater

1 Present Address: Korean Basic Sciences Institute, Yusung-Ku, Taejeon, KOREA
2 Stone & Webster
Contents

1 EXECUTIVE SUMMARY .. 1-1
 1.1. INTRODUCTION .. 1-1
 1.2. TOP-LEVEL REQUIREMENTS 1-2
 1.3. ASSESSMENT OF TOKAMAK REGIMES 1-4
 1.4. ENGINEERING ASSESSMENT OF DESIGN OPTIONS 1-12
 1.5. SUMMARY AND CONCLUSIONS 1-19
 REFERENCES .. 1-21

2 REQUIREMENTS AND GOALS FOR FUSION 2-1
 2.1. INTRODUCTION .. 2-1
 2.2. REQUIREMENTS & GOALS FOR FUSION POWER 2-2
 2.3. MISSION & REQUIREMENTS FOR THE FUSION DEMO 2-5
 2.4. TOP-LEVEL REQUIREMENTS 2-7
 2.5. SUMMARY AND CONCLUSIONS 2-14
 REFERENCES .. 2-15

3 ECONOMICS AND COSTING .. 3-1
 3.1. INTRODUCTION .. 3-1
 3.2. COST MODEL .. 3-2
 3.3. PLANT CAPACITY FACTOR ... 3-7
 3.4. MARKET CONTEXT .. 3-8
 3.5. SUMMARY AND CONCLUSIONS 3-12
 REFERENCES .. 3-13

4 SAFETY AND LICENSING .. 4-1
 4.1. INTRODUCTION .. 4-1
 4.2. REVIEW OF NRC DOCUMENTATION 4-1
 4.3. PATHWAY FOR DEVELOPMENT OF FUSION REGULATION 4-2
 4.4. TOP-LEVEL SAFETY REQUIREMENTS 4-4
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.4.</td>
<td>SYSTEMS ASSESSMENT</td>
<td>8-52</td>
</tr>
<tr>
<td>8.5.</td>
<td>SUMMARY & CONCLUSIONS</td>
<td>8-67</td>
</tr>
<tr>
<td></td>
<td>REFERENCES</td>
<td>8-68</td>
</tr>
<tr>
<td>A.1.</td>
<td>INTRODUCTION</td>
<td>A-1</td>
</tr>
<tr>
<td>A.2.</td>
<td>PHYSICAL PROPERTIES</td>
<td>A-2</td>
</tr>
<tr>
<td>A.3.</td>
<td>THERMAL PROPERTIES</td>
<td>A-4</td>
</tr>
<tr>
<td>A.4.</td>
<td>ELASTIC PROPERTIES</td>
<td>A-4</td>
</tr>
<tr>
<td>A.5.</td>
<td>TENSILE PROPERTIES OF UNIRRADIATED V-4Cr-4Ti</td>
<td>A-5</td>
</tr>
<tr>
<td>A.6.</td>
<td>THERMAL CREEP</td>
<td>A-11</td>
</tr>
<tr>
<td>A.7.</td>
<td>FATIGUE AND FRACTURE TOUGHNESS</td>
<td>A-13</td>
</tr>
<tr>
<td>A.8.</td>
<td>IRRADIATION EFFECTS</td>
<td>A-14</td>
</tr>
<tr>
<td></td>
<td>REFERENCES</td>
<td>A-18</td>
</tr>
</tbody>
</table>
ACKNOWLEDGMENTS

The members of ARIES team wish to express their appreciation to the Power Plant Studies Program Utility Advisory Committee and the EPRI Fusion working group. Special thanks to Mr. Steve Rosen of Houston Lighting and Power, Chairman of both committees. Their consultations and advice helped us greatly in defining an attractive fusion power plant. The authors also wish to express their appreciation to Ms. Allisa Becker for her efforts in preparing and publishing this report.

The ARIES program is supported by the U.S. DOE, Office of Fusion Energy Sciences, at the University of California, San Diego grant DE-AC03-95ER-54299; at Argonne National Laboratory under contract W-31-109-ENG-38; at General Atomics under contract DE-AC03-89ER52153; at Idaho National Engineering Laboratory under contract DE-AC07-76ID01570; at Los Alamos National Laboratory, which is operated by the University of California for the U.S. DOE under contract W-7405-ENG-36; at Massachusetts Institute of Technology under grant DE-FG02-91ER54110; at Princeton Plasma Physics Laboratory under contract DE-AC02-76CH03073; at Rensselaer Polytechnic Institute under grant DE-FG05-85ER52118; and at University of Wisconsin under grant DE-FG02-86ER53223. Work at Boeing and Raytheon Engineers & Constructors were funded under subcontracts from University of California, San Diego.

Power Plant Studies Program Utility Advisory Committee
and EPRI Fusion Working Group*

Steve Rosen Houston Lighting and Power
Merwin Brown Pacific Gas and Electric
Warren H. Fujimoto Pacific Gas and Electric
Jack Kaslow Electric Power Research Institute
John McCann Consolidated Edison of New York
Bill Muston Texas Utilities
Lawrence Papay Bechtel
Tom Schneider Electric Power Research Institute
Pete Skrgic Allegheny Power System
Bruce A. Snow Rochester Gas and Electric
John Stringer Electric Power Research Institute

* Membership of these committee changed during the course of the Starlite and ARIES-RS studies. Individuals listed above attended at least one meeting.