Progress Report on SPARTAN Chamber Dynamics Simulation Code

Farrokh Najmabadi, Zoran Dragojlovic

HAPL Meeting

April 8-10, 2003
Sandia National Laboratory, Albuquerque, NM

Electronic copy: http://aries.ucsd.edu/najmabadi/TALKS
UCSD IFE Web Site: http://aries.ucsd.edu/IFE
Since the Last HAPL Meeting, Chamber Simulation Research Was Focused on Two Fronts

- SPARTAN E-meeting was held on Feb. 25:
 - To develop a high level of confidence in SPARTAN code in the IFE community;
 - To discuss plans for code physics upgrades.

- Publication of SPARTAN code development in J. of Computational Physics:
 - To further enhance confidence in SPARTAN code.
 - To underline that HAPL-funded programs are high-quality research and contribute significantly to general science and engineering.
 - Required further work on embedded boundary algorithm and Dirichlet boundary conditions.
Progress in Refining Numerical Algorithms Has Continued

- We modified the embedded boundary algorithm from fully conservative to globally conservative (current state-of-the-art in the field) by redistribution of errors into neighboring cells.
- We implemented the solution to Riemann problem along the normal to the wall in order to estimate the pressure at the wall (as opposed to extrapolation from the surrounding fluid cells).
- We developed a second order estimation of the energy flux at the wall (Dirichlet boundary condition).
- We implemented Sutherland law for estimation of viscosity and thermal conductivity.
- We obtained ionization levels of Xenon gas from Don Haynes to account for background plasma thermal conductivity, viscosity, and radiation.
- Defined a set of test cases for publication.
SPARTAN E-Meeting Was Successful

- Participants suggested “0th order” tests: “Null test” and “Small Perturbation Test” to demonstrate gross stability:
 - Both tests were ran and were successful.
 - Detailed analysis of “Small Perturbation Test” showed that the projections of the normal flux to the wall in x and y directions were not calculated accurately and were fixed.

- Participants discussed and endorsed our research plan for the coming year.

- Convergence Analysis of test cases for J. of Computational Physics paper identified problems with the embedded boundary algorithm.
 - In collaborations with Mark Day of LBL, we are implementing some of the latest techniques to resolve this problem.
 - We have made good progress and estimate closure this month.
SPARTAN Research Plan for the Coming Year

- Incorporate cylindrical symmetry.
- Implement and test contributions of viscosity, thermal conductivity, and radiation from background plasma.
- Implement multi-species capability.
- Implement of Equation of State.
- Parametric investigation of chamber dynamics with different gas, gas pressure, target yield, chamber size, beam ports, etc.

At SPARTAN E-Meeting, we discussed implementation of SPARTAN on parallel processors. We agreed to shelf this unless SPARTAN run times become substantially long.