SiC/SiC Composite for an Advanced Fusion Power Plant Blanket

A. R. Raffray¹, L. El-Guebaly², D. K. Sze³, M. Billone³, I. Sviatoslavsky², E. Mogahed², F. Najmabadi¹, M. S. Tillack¹, X. Wang¹ and the ARIES Team

¹University of California, San Diego, EBU-II, Room 458, La Jolla, CA 92093-0417
²University of Wisconsin, Fusion Technology Institute, 1500 Engineering Drive, Madison, WI 53706-1687
³Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439

18th SOFE
Albuquerque, NM
October 25-29, 1999
Background

- The use of SiC/SiC composite as structural material in a fusion reactor is attractive based on its low induced radioactivity and afterheat and potential for high temperature operation
 - High risk, high payoff
 - Possibility of high cycle efficiency
 - Safety premium
 - Possibility of extending non-nuclear boundary closer
 - Possibility of lower LSA criterion in costing

- Considered in previous power plant studies
 - ARIES-I and ARIES-IV
 - TAUNO
 - DREAM

- Several issues exist, including:
 - Factors limiting the range of operation
 - Limited thermal conductivity at high temperature and under irradiation
 - Maximum allowable operating temperature
 - Cost of fabrication
 - Joining methods
Exploratory Study

• Assess attractiveness of a SiC/SiC based blanket for high performance blanket design
 - High temperature operation
 - Use latest SiC/SiC R&D results and reasonable future extrapolation

• Liquid metal breeder
 - Potential for high performance, high temperature blanket system
 - Self cooled or dual coolant (He for FW)
 - LiPb and LiSn

• Divertor region
 - Free LiSn flow
 - He-cooled refractory metal

• Recommendation of reference design for detailed integrated analysis as part of ARIES-AT
Input Parameters

• Power
 - Max. Heat Load = 1.5 x ARIES-RS
 - Total Fusion Power Same as ARIES-RS

• Latest SiC/SiC Property Data
 - Max. SiC/SiC Temperature Limit
 - ~ 1000°C to avoid irradiation-induced void swelling regime
 - SiC/SiC Thermal Conductivity
 - Decreases with temperature and irradiation
 - Recent measurement of unirradiated MER CVR SiC/SiC sample yielded 75 W/m-K at RT and 30-35 W/m-K at 1000°C.
 - In-situ k measurement of SiC/SiC samples at ORNL underway
 - Assume transverse k = 20 W/m-K

- Lifetime Based on ~3% Burn-Up

- Max. LiPb/SiC Interface Temp. Limit
 - One data point from ISPRA indicated no compatibility problem for SiC exposed over 1500 hours to static LiPb at 800°C
 - Future R&D required for flowing LiPb at high temperature
SiC/SiC Properties Used in this Study

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density (kg/m3)</td>
<td>3200</td>
</tr>
<tr>
<td>Density Factor</td>
<td>0.95</td>
</tr>
<tr>
<td>Young's Modulus (GPa)</td>
<td>360</td>
</tr>
<tr>
<td>Poisson's ratio</td>
<td>0.16</td>
</tr>
<tr>
<td>Thermal Expansion Coef. (ppm/°C)</td>
<td>4.4</td>
</tr>
<tr>
<td>Thermal Conduct. in Plane (W/m-K)</td>
<td>25</td>
</tr>
<tr>
<td>Therm. Conduct. through Thickness (W/m-K)</td>
<td>20</td>
</tr>
<tr>
<td>Maximum Allowable Primary Stress (MPa)</td>
<td>~140</td>
</tr>
<tr>
<td>Maximum Allowable Secondary Stress (MPa)</td>
<td>~190</td>
</tr>
<tr>
<td>Maximum Allowable Operating Temp. (°C)</td>
<td>1000</td>
</tr>
<tr>
<td>Max. Allow. SiC/LiPb Interface Temp. (°C)</td>
<td>TBD</td>
</tr>
<tr>
<td>Maximum Allowable SiC Burnup (%)</td>
<td>3</td>
</tr>
</tbody>
</table>
Machine and Power Parameters Assumed for the Study
(OB=Outboard, IB=Inboard, FW= First Wall)

<table>
<thead>
<tr>
<th>Power Parameters</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fusion Power (MW)</td>
<td>2170</td>
</tr>
<tr>
<td>Neutron Power (MW)</td>
<td>1736</td>
</tr>
<tr>
<td>Alpha Power (MW)</td>
<td>434</td>
</tr>
<tr>
<td>Current Drive Power (MW)</td>
<td>50</td>
</tr>
<tr>
<td>Maximum Surface Heat Flux (MW/m²)</td>
<td>0.71</td>
</tr>
<tr>
<td>Average Surface Heat Flux (MW/m²)</td>
<td>0.6</td>
</tr>
<tr>
<td>Power to the Divertor (MW)</td>
<td>140</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>From Neutronics Analysis</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Energy Multiplication</td>
<td>1.1</td>
</tr>
<tr>
<td>Maximum Thermal Power (MW)</td>
<td>2394</td>
</tr>
<tr>
<td>OB Max. Neutron Wall Load (MW/m²)</td>
<td>6.6</td>
</tr>
<tr>
<td>OB Avg. Neutron Wall Load (MW/m²)</td>
<td>5.6</td>
</tr>
<tr>
<td>IB Max. Neutron Wall Load (MW/m²)</td>
<td>5.1</td>
</tr>
<tr>
<td>IB Avg. Neutron Wall Load (MW/m²)</td>
<td>3.8</td>
</tr>
<tr>
<td>OB Max. Heat Generation in FW SiC (MW/m³)</td>
<td>33</td>
</tr>
<tr>
<td>OB Avg. Heat Generation in FW SiC (MW/m³)</td>
<td>28</td>
</tr>
<tr>
<td>OB Max. Heat Generation in FW LiPb (MW/m³)</td>
<td>25</td>
</tr>
<tr>
<td>OB Avg. Heat Generation in FW LiPb (MW/m³)</td>
<td>21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Machine Geometry</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Major Radius (m)</td>
<td>4.5</td>
</tr>
<tr>
<td>Minor Radius (m)</td>
<td>1.13</td>
</tr>
<tr>
<td>Outboard FW Location at Midplane (m)</td>
<td>6</td>
</tr>
<tr>
<td>Outboard FW Location at Lower/Upper End (m)</td>
<td>4.5</td>
</tr>
<tr>
<td>Inboard FW Location (m)</td>
<td>3.5</td>
</tr>
</tbody>
</table>
Study Based on He Brayton Power Cycle

- Best near-term possibility of power conversion with high efficiency
 - *Maximize potential gain from high temperature operation with SiC/SiC*
- Compatible with a liquid metal blanket through use of intermediate HX
Power Cycle Parameters

- Brayton Cycle Parameters:
 - Min. He temp. in cycle (heat sink) = 35 °C
 - 3-stage compression with 2 inter-coolers
 - Turbine efficiency = 0.93
 - Compressor efficiency = 0.9
 - Recuperator effectiveness = 0.96
 - He fraction. ΔP in out-of-vessel cycle = 0.025

- Intermediate Heat Exchanger:
 - Effectiveness = 0.9
 - $\frac{(m'C_p)_{He}}{(m'C_p)_{LiPb}} = 1$
Preliminary Analysis

Neutronics

• SiC/SiC+liquid breeder
 - 25-cm inboard and 55-cm outboard blanket regions with 8% SiC and 92% liquid breeder
 - 5-cm FW region on the inboard and outboard with 40% SiC and 60% liquid breeder
 - 90% enriched lithium

• TBR = 1.1 for Li\textsubscript{17}Pb\textsubscript{23} and only 0.95 for Li\textsubscript{25}Sn\textsubscript{75}
 - LiSn was not considered further in this study

Concepts Considered

• Self-cooled LiPb configuration

• Dual-coolant configuration (He for the FW and LiPb for the blanket)
Initial Findings Helped Focus the Study

• Poloidal box configuration with large LiPb channels
 - Dimensions set to accommodate the maximum allowable pressure and thermal stresses

• Separate cooling of the blanket box to maintain the SiC/LiPb <1000°C
 - Final LiPb flow pass between the cooled structure to maximize temperature and cycle efficiency

• Radial segmentation of blanket in order to save on replacement cost
 - ~25-cm first layer including the FW to be replaced at the end of its lifetime (~2.8 FPY based on a 3% SiC burnup limit)
 - ~35-cm lifetime second layer

• A poloidally-cooled FW configuration is preferred to a toroidally-cooled one
 - Simpler layout and manifolding configuration
 - Thinner radial build (for He coolant)
Poloidally-Cooled First Wall Configuration with Tapering Channels

- Consistent Parametric Comparison between He and LiPb as Poloidally-Flowing FW Coolant

- For Simplicity, the Minimum Channel Wall Thickness for Both Cases Was Set as One Tenth of the Diameter
 - For the He case this would correspond to a 100 MPa pressure stress for an assumed helium pressure of 20 MPa
 - For the LiPb, the pressure is much lower and the assumption is more conservative.
Cycle Efficiency and Maximum SiC Temperature as a Function of Total Compression Ratio for Different Poloidal He FW Channel Diameters

- Max. Brayton cycle He temp. = 1100°C

- Example design point:
 - Total compression ratio = 3
 - FW channel diameter = 3 cm
 - SiC max. temp. < 1000°C
 - Cycle efficiency ~ 59%
Cycle Efficiency and Maximum SiC Temperature as a Function of Total Compression Ratio for Different Poloidal LiPb FW Channel Diameters

- MHD flow laminarization effect included in heat transfer and pressure drop analysis
- Max. Brayton cycle He temp. = 1050°C
- Example design point:
 - Total compression ratio = 3
 - FW channel diameter = 2 cm
 - SiC max. temp. < 1000°C
 - Cycle efficiency ~ 59%
 - LiPb pressure drop ~ 1.3 MPa
Conclusions

Results are Encouraging for High Performance SiC/SiC-Based Blanket

• Brayton cycle η of ~60% can be achieved
 - Cooling box structure with lower temp. LiPb and superheating the LiPb in a final low velocity high temp. pass
 - SiC/LiPb interface temp. in the irradiated blanket region < 1000°C
 - Max. FW SiC temp. < 1000°C

• Safety benefits

However, Issues Need To Be Addressed, Including:

• Better Definition of SiC Material Properties
 - Max. temp. limits for SiC/SiC and LiPb/SiC compatibility under irradiation
 - SiC/SiC k at high temp. and under irrad.
 - Lifetime under irradiation
 - Fabrication quality and cost
 - Joining

• Compatible Divertor Design